• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Zhongming, GAN Lu, ZHANG Dengxiang, XIAO Zhezheng, LIAO Junhui. Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 110-119. DOI: 10.11779/CJGE20221165
Citation: JIANG Zhongming, GAN Lu, ZHANG Dengxiang, XIAO Zhezheng, LIAO Junhui. Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 110-119. DOI: 10.11779/CJGE20221165

Distribution characteristics and evolution laws of liner cracks in underground caverns for compressed air energy storage

More Information
  • Received Date: September 19, 2022
  • Available Online: March 16, 2023
  • The liner of underground gas storage cavern is used to transfer the internal pressure to the surrounding rock, and at the same time serves as the base of flexible sealing layer. The excessively wide cracks due to the high internal pressure may lead to generation of reflective cracks in the sealing layer, thus causing the leakage of high-pressure gas. To deeply understand the characteristics of liner cracking in high-pressure underground gas storage cavern, a routine for cracking analysis of a liner based on the FLAC3D platform is developed, and the influences of reinforcement mode and ratio, concrete cover thickness, surrounding rock type and effect of temperature-pressure cyclic loading on cracking evolution characteristics are studied. The research results show that the crack width of the liner can be effectively controlled by reasonable reinforcement of concrete liner and improvement of the surrounding rock quality. For a circular cross-section tunnel gas storage cavern, it is possible to control the maximum crack opening in the liner by differentiated reinforcement mode, so as to reasonably reduce the reinforcement quantity in the liner. The thermo-mechanical coupling effects due to the simultaneous change of compressed air pressure and temperature are helpful to reduce the crack width in the liner.
  • [1]
    张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.

    ZHANG Liying, YE Tinglu, XIN Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9. (in Chinese)
    [2]
    KIM H M, RUTQVIST J, RYU D W, et al. Exploring the concept of compressed air energy storage (CAES) in lined rock Caverns at shallow depth: a modeling study of air tightness and energy balance[J]. Applied Energy, 2012, 92: 653-667. doi: 10.1016/j.apenergy.2011.07.013
    [3]
    夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398.

    XIA Caichu, ZHANG Pingyang, ZHOU Shuwei, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398. (in Chinese)
    [4]
    蒋中明, 秦双专, 唐栋. 压气储能地下储气库围岩累积损伤特性数值研究[J]. 岩土工程学报, 2020, 42(2): 230-238. doi: 10.11779/CJGE202002003

    JIANG Zhongming, QIN Shuangzhuan, TANG Dong. Numerical study on accumulative damage characteristics of underground rock Caverns for compressed air energy storage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 230-238. (in Chinese) doi: 10.11779/CJGE202002003
    [5]
    JIANG Z M, LI P, TANG D, et al. Experimental and numerical investigations of small-scale lined rock cavern at shallow depth for compressed air energy storage[J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2671-2683. doi: 10.1007/s00603-019-02009-x
    [6]
    蒋中明, 李鹏, 赵海斌, 等. 压气储能浅埋地下储气库性能试验研究[J]. 岩土力学, 2020, 41(1): 235-241, 252.

    JIANG Zhongming, LI Peng, ZHAO Haibin, et al. Experimental study on performance of shallow rock cavern for compressed air energy storage[J]. Rock and Soil Mechanics, 2020, 41(1): 235-241, 252. (in Chinese)
    [7]
    邓建, 肖明, 陈俊涛. 高压引水隧洞运行期复杂承载过程数值分析[J]. 中南大学学报(自然科学版), 2017, 48(5): 1261-1267.

    DENG Jian, XIAO Ming, CHEN Juntao. Numerical analysis for complex bearing process of high pressure diversion tunnel at runtime[J]. Journal of Central South University (Science and Technology), 2017, 48(5): 1261-1267. (in Chinese)
    [8]
    苏凯, 王博士, 王文超, 等. 水-温作用下水工隧洞钢筋混凝土衬砌开裂特性[J]. 华中科技大学学报(自然科学版), 2020, 48(12): 114-120.

    SU Kai, WANG Boshi, WANG Wenchao, et al. Study on cracks of reinforced concrete lining of hydraulic tunnel under the combined action of water pressure and temperature load[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48(12): 114-120. (in Chinese)
    [9]
    韩峰, 徐磊, 金永苗. 输水隧洞内压作用下衬砌结构破坏分析[J]. 人民长江, 2020, 51(增刊1): 149-152.

    HAN Feng, XU Lei, JIN Yongmiao. Failure analysis on water diversion tunnel lining under internal pressure[J]. Yangtze River, 2020, 51(S1): 149-152. (in Chinese)
    [10]
    张广权, 曾大乾, 范照伟, 等. 利用地应力评价地下储气库断层密封性方法及应用[J]. 天然气地球科学, 2021, 32(6): 923-930.

    ZHANG Guangquan, ZENG Daqian, FAN Zhaowei, et al. Method and application of in situ stress field to evaluate fault sealing of underground gas storage traps[J]. Natural Gas Geoscience, 2021, 32(6): 923-930. (in Chinese)
    [11]
    张娟霞, 唐春安, 周秀艳, 等. 基于高性能计算的钢筋混凝土构件等间距裂缝形成过程研究[J]. 工程力学, 2009, 26(3): 161-167.

    ZHANG Juanxia, TANG Chunan, ZHOU Xiuyan, et al. Study on fracture spacing formation process of reinforced concrete specimen based on high performance calculation[J]. Engineering Mechanics, 2009, 26(3): 161-167. (in Chinese)
    [12]
    任晓丹, 李杰. 基于损伤理论的钢筋混凝土结构裂缝分析[J]. 同济大学学报(自然科学版), 2015, 43(8): 1129-1134.

    REN Xiaodan, LI Jie. Damage theory based analysis of crack opening width for RC structures[J]. Journal of Tongji University (Natural Science), 2015, 43(8): 1129-1134. (in Chinese)
    [13]
    陆新征. FRP-混凝土界面行为研究[D]. 北京: 清华大学, 2005.

    LU Xinzheng. Studies on FRP-Concrete Interface[D]. Beijing: Tsinghua University, 2005. (in Chinese)
    [14]
    MA F J, KWAN A K H. Crack width analysis of reinforced concrete members under flexure by finite element method and crack queuing algorithm[J]. Engineering Structures, 2015, 105: 209-219.
    [15]
    王新敏, 李义强, 许宏伟. ANSYS结构分析单元与应用[M]. 北京: 人民交通出版社, 2011.

    WANG Xinmin, LI Yiqiang, XU Hongwei. ANSYS Structural Analysis Unit and its Application[M]. Beijing: China Communications Press, 2011. (in Chinese)
    [16]
    张飞, 马建勋, 南燕. 混凝土塑性损伤模型参数的选取与验证计算[J]. 混凝土与水泥制品, 2021(1): 7-11, 29.

    ZHANG Fei, MA Jianxun, NAN Yan. Parameters selection and verification calculation of concrete plastic damage model[J]. China Concrete and Cement Products, 2021(1): 7-11, 29. (in Chinese)
    [17]
    康清梁. 钢筋混凝土有限元分析[M]. 北京: 中国水利水电出版社, 1996: 130-146.

    KANG Qingliang. RC Finite Element Analysis[M]. Beijing: China Water & Power Press, 1996: 130-146. (in Chinese)
    [18]
    KOUSKSOU T, ARID A, JAMIL A, et al. Thermal behavior of building material containing microencapsulated PCM[J]. Thermochimica Acta, 2012, 550: 42-47.
    [19]
    杨侗伟. 钢衬钢筋混凝土压力管道裂缝宽度计算模型研究[D]. 武汉: 湖北工业大学, 2020.

    YANG Dongwei. Research on Calculation Model of Crack Width of Steel Lined Reinforced Concrete Ppenstocks[D]. Wuhan: Hubei University of Technology, 2020. (in Chinese)
  • Article Video

  • Cited by

    Periodical cited type(8)

    1. 冯德銮,黎森宇,梁仕华. 水泥固化滨海软土动力特性研究进展与评述. 广东工业大学学报. 2024(02): 23-36 .
    2. 王喆恺,谭慧明,陶小三. 应力路径对盐城粉质黏土动剪切模量影响试验研究. 中国港湾建设. 2024(08): 44-49+73 .
    3. 苟乐宇,李飒,张先伟. 菌丝–砂复合轻质土的静力强度特性研究. 岩石力学与工程学报. 2024(10): 2590-2598 .
    4. 杨海华,刘亮,刘汉龙,高鹏展,陈育民. 高聚物胶凝戈壁土的动模量及阻尼比试验研究. 振动与冲击. 2023(03): 12-20 .
    5. 何俊,张驰,管家贤,吕晓龙. 碱渣固化疏浚淤泥的动变形特性研究. 岩石力学与工程学报. 2023(S1): 3712-3721 .
    6. 郭鹏斐,侯天顺,刘茜,骆亚生. 直剪试验方法对轻量土抗剪强度的影响规律研究. 水利水电技术(中英文). 2023(04): 161-170 .
    7. 杨凯旋,侯天顺,王琪,骆亚生. 剪切速率对EPS颗粒混合轻量土抗剪强度的影响规律研究. 水资源与水工程学报. 2022(05): 200-207 .
    8. 侯天顺,郭鹏斐,杨凯旋,王琪,骆亚生. 发泡颗粒混合轻量土静止土压力特性及计算方法研究. 岩土工程学报. 2022(12): 2234-2244 . 本站查看

    Other cited types(17)

Catalog

    Article views (547) PDF downloads (168) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return