Citation: | YAN Changbin, GAO Ziang, YAO Xitong, WANG Hejian, YANG Fengwei, YANG Jihua, LU Gaoming. Weighted random forest prediction model for TBM advance rate considering uncertainty[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2575-2583. DOI: 10.11779/CJGE20221139 |
[1] |
ROSTAMI J, OZDEMIR L. A new model for performance prediction of hard rock TBMs[C]//Proceedings of Rapid Excavation and Tunneling Conference (RETC). Boston, 1993: 793–809.
|
[2] |
BRULAND A. Hard Rock Tunnel Boring[D]. Trondheim: Norwegian University of Science and Technology (NTNU), 1998.
|
[3] |
BARTON N. TBM Tunnelling in Jointed and Faulted Rock[M]. Boca Raton: CRC Press, 2000: 170-175.
|
[4] |
ALVAREZ G M, BRUINES P A, VERHOEF P N W. Modeling tunnel boring machine performance by neuro-fuzzy methods[J]. Tunnelling and Underground Space Technology, 2000, 15(3): 259-269. doi: 10.1016/S0886-7798(00)00055-9
|
[5] |
ARMAGHANI D J, KOOPIALIPOOR M, MARTO A, et al. Application of several optimization techniques for estimating TBM advance rate in granitic rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(4): 779-789. doi: 10.1016/j.jrmge.2019.01.002
|
[6] |
ZHOU J, YAZDANI B B, JAHED A D, et al. Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 2069-2084. doi: 10.1007/s10064-019-01626-8
|
[7] |
邓军, 雷昌奎, 曹凯, 等. 采空区煤自燃预测的随机森林方法[J]. 煤炭学报, 2018, 43(10): 2800-2808. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810018.htm
DENG Jun, LEI Changkui, CAO Kai, et al. Random forest method for predicting coal spontaneous combustion in gob[J]. Journal of China Coal Society, 2018, 43(10): 2800-2808. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201810018.htm
|
[8] |
王仁超, 朱品光. 基于随机森林回归方法的爆破块度预测模型研究[J]. 水力发电学报, 2020, 39(1): 89-101. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202001012.htm
WANG Renchao, ZHU Pinguang. Study on blasting fragmentation prediction model based on random forest regression method[J]. Journal of Hydroelectric Engineering, 2020, 39(1): 89-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB202001012.htm
|
[9] |
李明超, 史博文, 韩帅, 等. 基于对穿声波波速的岩体完整性多尺度评价新指标与分析方法[J]. 岩石力学与工程学报, 2020, 39(10): 2060-2068. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010010.htm
LI Mingchao, SHI Bowen, HAN Shuai, et al. New index and analysis method for multi-scale rock mass integrity assessment based on P-wave velocity[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2060-2068. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010010.htm
|
[10] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
|
[11] |
闫长斌, 姜晓迪, 刘章恒, 等. 基于岩碴粒径分布规律的TBM破岩效率分析[J]. 岩土工程学报, 2019, 41(3): 466-474. doi: 10.11779/CJGE201903008
YAN Changbin, JIANG Xiaodi, LIU Zhangheng, et al. Rock-breaking efficiency of TBM based on particle-size distribution of rock detritus[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 466-474. (in Chinese) doi: 10.11779/CJGE201903008
|
[12] |
FROUGH O, TORABI S R, YAGIZ S, et al. Effect of rock mass conditions on TBM utilization factor in Karaj-Tehran water conveyance tunnel[C]// World Tunnel Congress. Thailand, 2012.
|
[13] |
FROUGH O, TORABI S R, YAGIZ S. Application of RMR for estimating rock-mass-related TBM utilization and performance parameters: a case study[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1305-1312. doi: 10.1007/s00603-014-0619-4
|
[14] |
龚秋明, 卢建炜, 魏军政, 等. 基于岩体分级系统(RMR)评估预测TBM利用率研究[J]. 施工技术, 2018, 47(5): 92-98, 127. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201805023.htm
GONG Qiuming, LU Jianwei, WEI Junzheng, et al. Study on estimation and prediction of TBM utilization rate using rock mass rating(RMR)[J]. Construction Technology, 2018, 47(5): 92-98, 127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201805023.htm
|
[15] |
KOHAVI R. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2. New York, 1995.
|