• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Heng, HOU Ji-chao, ZHAO Ming-hua. Generalized Patton shear model for rock-concrete joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2106-2114. DOI: 10.11779/CJGE202211017
Citation: ZHAO Heng, HOU Ji-chao, ZHAO Ming-hua. Generalized Patton shear model for rock-concrete joints[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2106-2114. DOI: 10.11779/CJGE202211017

Generalized Patton shear model for rock-concrete joints

More Information
  • Received Date: November 10, 2021
  • Available Online: December 08, 2022
  • In order to predict the shear strength of the rock-concrete joints subjected to the constant normal stiffness (CNS), the classical Patton model (idealized as regular triangular asperities) is modified, and the regular triangular asperities are extended to similar ones. The quantitative method for the roughness of rock-concrete joints is also given. Compared with the regular ones, the similar triangular asperities carry different local stresses due to different wavelengths, leading to an asynchronous failure. The collapse load and critical shear displacement of every asperity are identified by the lower-bound solution. On this basis, an evolution equation is proposed to quantify the occurrence of local failure, and the classical Patton model is generalized. The generalized Patton model can predict the shear strength of joints of both the regular and the similar triangular asperities, and the current form can be regressed to the classical form under certain conditions. Finally, the proposed model is validated by the observations from 12 groups of CNS direct shear tests.
  • [1]
    THIRUKUMARAN S, INDRARATNA B. A review of shear strength models for rock joints subjected to constant normal stiffness[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(3): 405–414. doi: 10.1016/j.jrmge.2015.10.006
    [2]
    李海波, 刘博, 冯海鹏, 等. 模拟岩石节理试样剪切变形特征和破坏机制研究[J]. 岩土力学, 2008, 29(7): 1741–1746, 1752. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807006.htm

    LI Hai-bo, LIU Bo, FENG Hai-peng, et al. Study of deformability behaviour and failure mechanism by simulating rock joints sample under different loading conditions[J]. Rock and Soil Mechanics, 2008, 29(7): 1741–1746, 1752. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200807006.htm
    [3]
    GU X F, SEIDEL J P, HABERFIELD C M. Direct shear test of sandstone-concrete joints[J]. International Journal of Geomechanics, 2003, 3(1): 21–33. doi: 10.1061/(ASCE)1532-3641(2003)3:1(21)
    [4]
    庄晓莹, 黄润秋, 朱合华. 基于水平集坐标的二维压剪节理动态扩展过程无网格法模拟研究[J]. 岩石力学与工程学报, 2012, 31(11): 2187–2196. doi: 10.3969/j.issn.1000-6915.2012.11.006

    ZHUANG Xiao-ying, HUANG Run-qiu, ZHU He-hua. Simulation for 2d compression-shear joint dynamic propagation process using meshless methods based on level sets coordinates[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2187–2196. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.11.006
    [5]
    JOHNSTON I W, LAM T S K, WILLIAMS A F. Constant normal stiffness direct shear testing for socketed pile design in weak rock[J]. Géotechnique, 1987, 37(1): 83–89. doi: 10.1680/geot.1987.37.1.83
    [6]
    ZHAO H, HOU J C, ZHANG L, et al. Vertical load transfer for bored piles buried in cohesive intermediate geomaterials[J]. International Journal of Geomechanics, 2020, 20(10): 04020172. doi: 10.1061/(ASCE)GM.1943-5622.0001810
    [7]
    夏才初, 喻强锋, 钱鑫, 等. 常法向刚度条件下岩石节理剪切-渗流特性试验研究[J]. 岩土力学, 2020, 41(1): 57–66, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001008.htm

    XIA Cai-chu, YU Qiang-feng, QIAN Xin, et al. Experimental study of shear-seepage behaviour of rock joints under constant normal stiffness[J]. Rock and Soil Mechanics, 2020, 41(1): 57–66, 77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001008.htm
    [8]
    BARTON N. The shear strength of rock and rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(9): 255–279.
    [9]
    赵坚. 岩石节理剪切强度的JRC-JMC新模型[J]. 岩石力学与工程学报, 1998, 17(4): 1–9. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX804.000.htm

    ZHAO Jian. A new JRC JMC shear strength criterion for rock joint[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(4): 1–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX804.000.htm
    [10]
    PATTON F D. Multiple modes of shear failure in rock[C]//Procced 1st Cong Int Soc Rock Mech. Lisbon, 1966.
    [11]
    JAEGER J C. Friction of rocks and stability of rock slopes[J]. Géotechnique, 1971, 21(2): 97–134. doi: 10.1680/geot.1971.21.2.97
    [12]
    SAEB S, AMADEI B. Modelling rock joints under shear and normal loading[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1992, 29(3): 267–278. https://www.sciencedirect.com/science/article/pii/014890629293660C
    [13]
    赵明华, 夏润炎, 尹平保, 等. 考虑软岩剪胀效应的嵌岩桩荷载传递机理分析[J]. 岩土工程学报, 2014, 36(6): 1005–1011. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15737.shtml

    ZHAO Ming-hua, XIA Run-yan, YIN Ping-bao, et al. Load transfer mechanism of socketed piles considering shear dilation effects of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1005–1011. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15737.shtml
    [14]
    BAHAADDINI M, SHARROCK G, HEBBLEWHITE B K. Numerical direct shear tests to model the shear behaviour of rock joints[J]. Computers and Geotechnics, 2013, 51: 101–115. https://www.sciencedirect.com/science/article/pii/S0266352X13000293
    [15]
    SEIDEL J P, COLLINGWOOD B. A new socket roughness factor for prediction of rock socket shaft resistance[J]. Canadian Geotechnical Journal, 2001, 38(1): 138–153. https://www.osti.gov/etdeweb/biblio/20155262
    [16]
    HOU J C, ZHAO H, PENG W Z, et al. A limit solution for predicting side resistance on rock-socketed piles[J]. Journal of Engineering Mechanics, 2022, 148(1): 04021131.
    [17]
    SEIDEL J P, HABERFIELD C M. Towards an understanding of joint roughness[J]. Rock Mechanics and Rock Engineering, 1995, 28(2): 69–92. doi: 10.1007/BF01020062
    [18]
    SEIDEL J P, HABERFIELD C M. A theoretical model for rock joints subjected to constant normal stiffness direct shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(5): 539–553. https://www.sciencedirect.com/science/article/pii/S1365160902000564
    [19]
    SEOL H, JEONG S, CHO C, et al. Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI)[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 848–861. https://www.sciencedirect.com/science/article/pii/S1365160907001578
    [20]
    赵明华, 雷勇, 刘晓明. 基于桩-岩结构面特性的嵌岩桩荷载传递分析[J]. 岩石力学与工程学报, 2009, 28(1): 103–110. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901016.htm

    ZHAO Ming-hua, LEI Yong, LIU Xiao-ming. Analysis of load transfer of rock-socketed piles based on characteristics of pile-rock structural plane[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 103–110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200901016.htm
    [21]
    BARTON N, CHOUBEY V. The Shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1): 1–54.
    [22]
    CHEN W. Limit Analysis and Soil Plasticity[M]. Amsterdam: Elsevier Scientific Pub. Co, 1975.
    [23]
    ULUSAY R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014[M]. New York: Springer, 2015.
  • Cited by

    Periodical cited type(5)

    1. 刘智敏,陈广思,王晓磊,李成凤,刘润. 海上风电筒型基础在水平力和力矩耦合作用下的变形模式研究. 太阳能学报. 2025(03): 697-704 .
    2. 李文轩,范开放,刘永刚,朱洵. 粉砂地基中复合筒型基础水平承载特性研究. 水利水运工程学报. 2023(02): 87-95 .
    3. 吴宜鹏,范庆来,任增乾,陈箫笛. 考虑软土应变软化效应的深埋式大圆筒承载性状分析. 防灾减灾工程学报. 2022(04): 859-865 .
    4. 蔡正银,王清山,关云飞,韩迅,李文轩. 分舱板对海上风电复合筒型基础承载特性的影响研究. 岩土工程学报. 2021(04): 751-759 . 本站查看
    5. 张连丽,蒋幼梅,林浙,唐成虎. 筒形导管架桩基防波堤结构及其经济分析. 中阿科技论坛(中英文). 2020(11): 44-46 .

    Other cited types(3)

Catalog

    Article views (185) PDF downloads (29) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return