• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Jing, HAN Cong-cong, LIU Jun, KONG Xian-jing. Experimental investigation on uplift behaviors of mudmats on soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2097-2105. DOI: 10.11779/CJGE202211016
Citation: WANG Jing, HAN Cong-cong, LIU Jun, KONG Xian-jing. Experimental investigation on uplift behaviors of mudmats on soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2097-2105. DOI: 10.11779/CJGE202211016

Experimental investigation on uplift behaviors of mudmats on soft clay

More Information
  • Received Date: October 31, 2021
  • Available Online: December 08, 2022
  • The subsea mudmats are usually used to support subsea structures. When the mudmat, located on the surface of soft clayey seabed, is subjected to uplift loads, the suction force is generated at the mudmat-soil interface. The suction is beneficial in improving the stability of the mudmat, but is disadvantageous in retrieving the mudmat. Therefore, it is necessary to investigate the invert suction systematically. A series of model tests are conducted to investigate the uplift capacity of the mudmat resting on the homogeneous or lightly overconsolidated clay. The factors influencing the uplift capacity are investigated, including the uplift velocity, the soil strength, the soil heterogeneity and the degree of consolidation. Several pore pressure transducers are installed at the invert of the model mudmat to measure the generation, development, distribution and dissipation of the pore water pressure. The test results show that the uplift capacity of the mudmat is provided by the invert suction. Meanwhile, the results show that the uplift capacity and the average suction at the invert of the mudmat the increase with increasing uplift velocity, heterogeneity and degree of consolidation. In addition, it is found that the suction near the centre of the mudmat invert is greater and disappears later than that at the margin. In order to reduce the invert suction through perforating, the optimal position of perforations should be set at the centre of the mudmat.
  • [1]
    American Petroleum Institute. RP 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design[M]. Washington: API Publishing Services, 2002.
    [2]
    FENG X, RANDOLPH M F, GOURVENEC S, et al. Design approach for rectangular mudmats under fully three-dimensional loading[J]. Géotechnique, 2014, 64(1): 51–63. doi: 10.1680/geot.13.P.051
    [3]
    FENG X, GOURVENEC S. Consolidated undrained load-carrying capacity of subsea mudmats under combined loading in six degrees of freedom[J]. Géotechnique, 2015, 65(7): 563–575. doi: 10.1680/geot.14.P.090
    [4]
    BOUWMEESTER D, PEUCHEN J, VAN der Wal T, et al. Prediction of breakout force for deep water seafloor objects[C]// Proceedings of the Offshore Technology Conference. Houston, 2009.
    [5]
    REID M. Re-deployable Subsea Foundations[D]. Cambridge: University of Cambridge, 2007.
    [6]
    FINN W D, BYRNE P M. The evaluation of the break-out force for a submerged ocean platform[C]// Proceedingsofthe Offshore Technology Conference. Houston, 1972.
    [7]
    BYRNE P M, FINN W D L. Breakout of submerged structures buried to a shallow depth[J]. Canadian Geotechnical Journal, 1978, 15(2): 146–154. doi: 10.1139/t78-015
    [8]
    LEHANE B M, GAUDIN C, RICHARDS D J, et al. Rate effects on the vertical uplift capacity of footings founded in clay[J]. Géotechnique, 2008, 58(1): 13–21. doi: 10.1680/geot.2008.58.1.13
    [9]
    CHEN R, GAUDIN C, CASSIDY M J. Investigation of the vertical uplift capacity of deep water mudmats in clay[J]. Canadian Geotechnical Journal, 2012, 49(7): 853–865. doi: 10.1139/t2012-037
    [10]
    刘润, 孔金鹏, 刘孟孟, 等. 饱和软黏土中开孔防沉板基础上拔特性研究[J]. 岩土工程学报, 2019, 41(8): 1427–1434. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17967.shtml

    LIU Run, KONG Jin-peng, LIU Meng-meng, et al. Uplift behaviors of perforated mudmats in soft saturated clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1427–1434. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17967.shtml
    [11]
    冯国栋, 刘祖德, 俞季民, 等. 海泥对海洋工程沉垫底面吸附力的试验研究[J]. 武汉水利电力学院学报, 1981(1): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198101000.htm

    FENG Guo-dong, LIU Zu-de, YU Ji-min, et al. Experimental study on the suction force beneath the marine cushion[J]. Engineering Journal of Wuhan University, 1981(1): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD198101000.htm
    [12]
    韩丽华, 姜萌, 张日向. 海洋结构物沉箱吸附力的试验模拟[J]. 港工技术, 2009, 6(6): 43–45. https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200906015.htm

    HAN Li-hua, JIANG Meng, ZHANG Ri-xiang. Experiment simulation of absorption force of marine structure caisson[J]. Port Engineering Technology, 2009, 6(6): 43–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GAOG200906015.htm
    [13]
    GOURVENEC S, ACOSTA-MARTINEZ H E, RANDOLPH M F. Experimental study of uplift resistance of shallow skirted foundations in clay under transient and sustained concentric loading[J]. Géotechnique, 2009, 59(6): 525–537. doi: 10.1680/geot.2007.00108
    [14]
    RANDOLPH M F, GAUDIN C, GOURVENEC S M, et al. Recent advances in offshore geotechnics for deep water oil and gas developments[J]. Ocean Engineering, 2011, 38(7): 818–834. doi: 10.1016/j.oceaneng.2010.10.021
    [15]
    MARTIN C M, RANDOLPH M F. Applications of the lower and upper bound theorems of plasticity to collapse of circular foundations[C]// Proceedings of 10th Int Conf on Computer Methods and Advances in Geomechanics. Abingdon, 2001.
    [16]
    EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1991–2016. doi: 10.1002/nme.1350
    [17]
    FINNIE I M S, RANDOLPH M F. Punch-through and liquefaction induced failure of shallow foundations on calcareous sediments[C]// Proceedings of the International Conference on Behaviour of Offshore Structures. Boston, 1994.
    [18]
    LI X, GAUDIN C, TIAN Y, et al. Effects of preloading and consolidation on the uplift capacity of skirted foundations[J]. Géotechnique, 2015, 65(12): 1010–1022. doi: 10.1680/jgeot.15.P.026
    [19]
    HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327–350. doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
    [20]
    GOURVENEC S M, MANA D S K. Undrained vertical bearing capacity factors for shallow foundations[J]. Géotechnique Letters, 2011, 1(4): 101–108. doi: 10.1680/geolett.11.00026
    [21]
    LIU J, HU Y X. The effect of strength anisotropy on the bearing capacity of spudcan foundations[J]. Computers and Geotechnics, 2009, 36(1/2): 125–134. https://www.sciencedirect.com/science/article/pii/S0266352X08000177
    [22]
    LADD C C. Stability evaluation during staged constructures[J]. Journal of Geotechnical Engineering, 1991, 117(4): 540–615. doi: 10.1061/%28ASCE%290733-9410%281991%29117%3A4%28540%29
  • Cited by

    Periodical cited type(18)

    1. 江昭明,陈永贵,文子豪,付俊,周罕. pH值对MICP固化修复镉污染尾矿的影响研究. 岩土工程学报. 2025(01): 38-47 . 本站查看
    2. 陈永贵,江昭明,付俊,周罕,文子豪. 巴氏芽孢杆菌固化污染土的培养优化与矿化机制. 同济大学学报(自然科学版). 2025(04): 635-643 .
    3. 缪林昌,王恒星,孙潇昊,吴林玉,王呈呈,范广才,尹文华,王芳. 生物矿化技术固化风积沙试验与应用. 东南大学学报(自然科学版). 2023(01): 149-155 .
    4. 赵旭东,李伟群,尹文华,张易辰,繆林昌. 生物矿化技术在沙漠现场的大规模应用研究. 中阿科技论坛(中英文). 2022(02): 52-56 .
    5. 肖瑶,邓华锋,李建林,程雷,朱文羲. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究. 岩土力学. 2022(02): 395-404 .
    6. 程雷,肖瑶,邓华锋,熊雨,彭萌,支永艳,李文华. 一株本源产脲酶细菌的分离培养及其在裂隙岩体加固中的应用. 岩土力学. 2022(S2): 307-314 .
    7. 肖海,胡欢,吕广柳,张文琪,朱志恩,向瑞,杨悦舒,夏振尧,旺杰. 微生物诱导碳酸钙沉淀影响因素研究进展分析. 三峡大学学报(自然科学版). 2022(06): 66-75 .
    8. 王恒星,缪林昌,孙潇昊,吴林玉. 微生物诱导固化技术研究进展. 湖南大学学报(自然科学版). 2021(01): 70-81 .
    9. 孙潇昊,缪林昌,童天志,吴林玉,王恒星. 微生物固化砂柱效果电阻率评价研究. 岩土工程学报. 2021(03): 579-585 . 本站查看
    10. 刘士雨,俞缙,曾伟龙,彭兴黔,蔡燕燕,涂兵雄. 微生物诱导碳酸钙沉淀修复三合土裂缝效果研究. 岩石力学与工程学报. 2020(01): 191-204 .
    11. 吴超传,郑俊杰,赖汉江,崔明娟,宋杨. 微生物固化砂土强度增长机理及影响因素试验研究. 土木与环境工程学报(中英文). 2020(01): 31-38 .
    12. 郑俊杰,吴超传,宋杨,崔明娟. MICP胶结钙质砂的强度试验及强度离散性研究. 哈尔滨工程大学学报. 2020(02): 250-256 .
    13. 张肖冲,靳新影,王静,陈韵,金多,马志山,刘建利,李靖宇. 不同生物土壤结皮微生物组跨膜转运蛋白基因多样性及差异. 微生物学通报. 2020(05): 1388-1403 .
    14. 孙潇昊,缪林昌,吴林玉,王呈呈,陈润发. 低温条件微生物MICP沉淀产率试验研究. 岩土工程学报. 2019(06): 1133-1138 . 本站查看
    15. 刘士雨,俞缙,韩亮,蔡燕燕,涂兵雄,周建烽. 三合土表面微生物诱导碳酸钙沉淀耐水性试验研究. 岩石力学与工程学报. 2019(08): 1718-1728 .
    16. 陈润发,缪林昌,孙潇昊,吴林玉,王呈呈. 微生物修复混凝土细小裂缝不同修复方法对比研究. 硅酸盐通报. 2019(10): 3054-3059 .
    17. 朱纪康,周杨,王殿龙,张家铭. 基于微生物诱导矿化的钙质砂加固影响因素. 地质科技情报. 2019(06): 206-211 .
    18. 孙潇昊,缪林昌,吴林玉,王呈呈,陈润发. 低温条件下微生物诱导固化对比研究. 岩土力学. 2018(S2): 224-230 .

    Other cited types(16)

Catalog

    Article views (159) PDF downloads (29) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return