Citation: | LIN Yuan-xiang, ZHENG Jun-jie, HOU Ru-yi, FANG Hao. Lower shakedown limits of layered road structures under moving harmonic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2026-2034. DOI: 10.11779/CJGE202211008 |
[1] |
ZHUANG Y, WANG K Y, LI H X. Shakedown solutions for ballasted track structure under multiple uniform loads[J]. Transportation Geotechnics, 2020, 22: 100298.
|
[2] |
王娟, 余海岁. 道路安定理论的进展及其应用[J]. 岩土力学, 2014, 35(5): 1255–1262, 1268. doi: 10.16285/j.rsm.2014.05.026
WANG Juan, YU Hai-sui. Development and its application of shakedown theory for road pavements[J]. Rock and Soil Mechanics, 2014, 35(5): 1255–1262, 1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.026
|
[3] |
MELAN E. Der spannungsgudstand eines Henky-Mises schen kontinuums bei verlandicher belastung[J]. Sitzungberichte der Ak Wissenschaften Wie (Ser. 2A), 1938, 147: 73.
|
[4] |
KOITER W T. General theorems for elastic-plastic solids[M]// Progress in Solid Mechanics. Amsterdam: North-Holland Publishing Company, 1960.
|
[5] |
王永刚, 钱建固. 移动荷载下三维半空间动力安定性下限分析[J]. 岩土力学, 2016, 37(增刊1): 570–576. doi: 10.16285/j.rsm.2016.S1.074
WANG Yong-gan, QIAN Jian-gu. Dynamic shakedown lower-bound analysis of three-dimensional half-space under moving load[J]. Rock and Soil Mechanics, 2016, 37(S1): 570–576. (in Chinese) doi: 10.16285/j.rsm.2016.S1.074
|
[6] |
SHARP R W, BOOKER J R. Shakedown of pavements under moving surface loads[J]. Journal of Transportation Engineering, ASCE, 1984, 110(1): 1–14.
|
[7] |
SHIAU S H. Numerical Methods for Shakedown Analysis of Pavements Under Moving Surface Loads[D]. Newcastle: University of Newcastle, 2001.
|
[8] |
YU H S. Three-dimensional analytical solutions for shakedown of cohesive-frictional materials under moving surface loads[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2059): 1951–1964.
|
[9] |
YU H S, WANG J. Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2012, 49(26): 3797–3807.
|
[10] |
WANG J, YU H S. Shakedown analysis for design of flexible pavements under moving loads[J]. Road Materials and Pavement Design, 2013, 14(3): 703–722.
|
[11] |
WANG J, YU H S. Three-dimensional shakedown solutions for anisotropic cohesive-frictional materials under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 331–348.
|
[12] |
LIU S, WANG J, YU H S, et al. Shakedown solutions for pavements with materials following associated and non-associated plastic flow rules[J]. Computers and Geotechnics, 2016, 78: 218–226.
|
[13] |
QIAN J G, WANG Y G, LIN Z G, et al. Dynamic shakedown analysis of flexible pavement under traffic moving loading[J]. Procedia Engineering, 2016, 143: 1293–1300.
|
[14] |
QIAN J G, WANG Y G, WANG J, et al. The influence of traffic moving speed on shakedown limits of flexible pavements[J]. International Journal of Pavement Engineering, 2019, 20(2): 233–244.
|
[15] |
ZHUANG Y, WANG K Y. Three-dimensional shakedown analysis of ballasted railway structures under moving surface loads with different load distributions[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 296–300.
|
[16] |
ZHUANG Y, WANG K Y, LI H X, et al. Application of three-dimensional shakedown solutions in railway structure under multiple Hertz loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 328–338.
|
[17] |
LU Z, QIAN J G, ZHOU R Y. Shakedown analysis of flexible pavement on saturated subgrade under moving traffic loading[C]// Advances in Environmental Vibration and Transportation Geodynamics, 2020. Singapore.
|
[18] |
BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482–1498.
|
[19] |
WANG J, YU H S. Residual stresses and shakedown in cohesive-frictional half-space under moving surface loads[J]. Geomechanics and Geoengineering, 2013, 8(1): 1–14.
|
[20] |
LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573–586.
|
[21] |
HALLONBORG U. Super ellipse as tyre-ground contact area[J]. Journal of Terramechanics, 1996, 33(3): 125–132.
|
[22] |
XU B, LU J F, WANG J H. Dynamic response of a layered water-saturated half space to a moving load[J]. Computers and Geotechnics, 2008, 35(1): 1–10.
|
[23] |
李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016.
LI Guang-xin. Advanced Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2016. (in Chinese)
|
[24] |
ACHENBACH J D, THAU S A. Wave propagation in elastic solids[J]. Journal of Applied Mechanics, 1974, 41(2): 544.
|
[25] |
周仁义, 钱建固, 黄茂松. 不平顺路面的车辆动载诱发饱和地基的动应力响应[J]. 振动与冲击, 2016, 35(11): 93-101, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm
ZHOU Ren-yi, QIAN Jian-gu, HUANG Mao-song. Influences of vehicle dynamic load on dynamic stress in saturated poro-elastic ground[J]. Journal of Vibration and Shock, 2016, 35(11): 93–101, 122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm
|
[26] |
公路工程技术标准: JTG B01—2014[S]. 北京: 人民交通出版社, 2015.
Technical Standard of Highway Engineering: JTG B01—2014[S]. Beijing: China Communications Press, 2015. (in Chinese)
|
1. |
陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
![]() | |
2. |
冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
![]() | |
3. |
李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 .
![]() | |
4. |
林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
![]() | |
5. |
刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
![]() | |
6. |
王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
![]() | |
7. |
倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
![]() | |
8. |
康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .
![]() |