• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIN Yuan-xiang, ZHENG Jun-jie, HOU Ru-yi, FANG Hao. Lower shakedown limits of layered road structures under moving harmonic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2026-2034. DOI: 10.11779/CJGE202211008
Citation: LIN Yuan-xiang, ZHENG Jun-jie, HOU Ru-yi, FANG Hao. Lower shakedown limits of layered road structures under moving harmonic loads[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2026-2034. DOI: 10.11779/CJGE202211008

Lower shakedown limits of layered road structures under moving harmonic loads

More Information
  • Received Date: September 06, 2021
  • Available Online: December 08, 2022
  • The shakedown limits of layered road structures subjected to a moving harmonic load are studied. The inverse Fourier transform and the numerical integration are used to obtain the dynamic responses of a three-dimensional layered road structure in the time and space domain. Considering the effective stress field of saturated subsoil instead of the total stress field, the existing static shakedown theorem and the solving method for the shakedown limits are improved, and the concept of the effective shakedown limit is proposed and compared with the solving method for the shakedown limits considering the total stress. In addition, different effective internal friction angles are selected for the saturated soil layer, and the influences of load-moving speed, load frequency and pavement stiffness on the effective shakedown limit and effective critical depth of the layered road structure are studied respectively. The results show that there is a significant difference between the effective shakedown limits and the shakedown limits obtained by the solving method for the shakedown limits considering the total stress. Moreover, the effective critical depth is deeper than that obtained by the solving method for the shakedown limits considering the total stress when the load-moving speed is relatively high. The proposed method for solving the effective shakedown limits is more suitable for the design and safety assessment of layered road structures containing saturated soil layers.
  • [1]
    ZHUANG Y, WANG K Y, LI H X. Shakedown solutions for ballasted track structure under multiple uniform loads[J]. Transportation Geotechnics, 2020, 22: 100298.
    [2]
    王娟, 余海岁. 道路安定理论的进展及其应用[J]. 岩土力学, 2014, 35(5): 1255–1262, 1268. doi: 10.16285/j.rsm.2014.05.026

    WANG Juan, YU Hai-sui. Development and its application of shakedown theory for road pavements[J]. Rock and Soil Mechanics, 2014, 35(5): 1255–1262, 1268. (in Chinese) doi: 10.16285/j.rsm.2014.05.026
    [3]
    MELAN E. Der spannungsgudstand eines Henky-Mises schen kontinuums bei verlandicher belastung[J]. Sitzungberichte der Ak Wissenschaften Wie (Ser. 2A), 1938, 147: 73.
    [4]
    KOITER W T. General theorems for elastic-plastic solids[M]// Progress in Solid Mechanics. Amsterdam: North-Holland Publishing Company, 1960.
    [5]
    王永刚, 钱建固. 移动荷载下三维半空间动力安定性下限分析[J]. 岩土力学, 2016, 37(增刊1): 570–576. doi: 10.16285/j.rsm.2016.S1.074

    WANG Yong-gan, QIAN Jian-gu. Dynamic shakedown lower-bound analysis of three-dimensional half-space under moving load[J]. Rock and Soil Mechanics, 2016, 37(S1): 570–576. (in Chinese) doi: 10.16285/j.rsm.2016.S1.074
    [6]
    SHARP R W, BOOKER J R. Shakedown of pavements under moving surface loads[J]. Journal of Transportation Engineering, ASCE, 1984, 110(1): 1–14.
    [7]
    SHIAU S H. Numerical Methods for Shakedown Analysis of Pavements Under Moving Surface Loads[D]. Newcastle: University of Newcastle, 2001.
    [8]
    YU H S. Three-dimensional analytical solutions for shakedown of cohesive-frictional materials under moving surface loads[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2059): 1951–1964.
    [9]
    YU H S, WANG J. Three-dimensional shakedown solutions for cohesive-frictional materials under moving surface loads[J]. International Journal of Solids and Structures, 2012, 49(26): 3797–3807.
    [10]
    WANG J, YU H S. Shakedown analysis for design of flexible pavements under moving loads[J]. Road Materials and Pavement Design, 2013, 14(3): 703–722.
    [11]
    WANG J, YU H S. Three-dimensional shakedown solutions for anisotropic cohesive-frictional materials under moving surface loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(4): 331–348.
    [12]
    LIU S, WANG J, YU H S, et al. Shakedown solutions for pavements with materials following associated and non-associated plastic flow rules[J]. Computers and Geotechnics, 2016, 78: 218–226.
    [13]
    QIAN J G, WANG Y G, LIN Z G, et al. Dynamic shakedown analysis of flexible pavement under traffic moving loading[J]. Procedia Engineering, 2016, 143: 1293–1300.
    [14]
    QIAN J G, WANG Y G, WANG J, et al. The influence of traffic moving speed on shakedown limits of flexible pavements[J]. International Journal of Pavement Engineering, 2019, 20(2): 233–244.
    [15]
    ZHUANG Y, WANG K Y. Three-dimensional shakedown analysis of ballasted railway structures under moving surface loads with different load distributions[J]. Soil Dynamics and Earthquake Engineering, 2017, 100: 296–300.
    [16]
    ZHUANG Y, WANG K Y, LI H X, et al. Application of three-dimensional shakedown solutions in railway structure under multiple Hertz loads[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 328–338.
    [17]
    LU Z, QIAN J G, ZHOU R Y. Shakedown analysis of flexible pavement on saturated subgrade under moving traffic loading[C]// Advances in Environmental Vibration and Transportation Geodynamics, 2020. Singapore.
    [18]
    BIOT M A. Mechanics of deformation and acoustic propagation in porous media[J]. Journal of Applied Physics, 1962, 33(4): 1482–1498.
    [19]
    WANG J, YU H S. Residual stresses and shakedown in cohesive-frictional half-space under moving surface loads[J]. Geomechanics and Geoengineering, 2013, 8(1): 1–14.
    [20]
    LU J F, JENG D S. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures, 2007, 44(2): 573–586.
    [21]
    HALLONBORG U. Super ellipse as tyre-ground contact area[J]. Journal of Terramechanics, 1996, 33(3): 125–132.
    [22]
    XU B, LU J F, WANG J H. Dynamic response of a layered water-saturated half space to a moving load[J]. Computers and Geotechnics, 2008, 35(1): 1–10.
    [23]
    李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016.

    LI Guang-xin. Advanced Soil Mechanics[M]. 2nd ed. Beijing: Tsinghua University Press, 2016. (in Chinese)
    [24]
    ACHENBACH J D, THAU S A. Wave propagation in elastic solids[J]. Journal of Applied Mechanics, 1974, 41(2): 544.
    [25]
    周仁义, 钱建固, 黄茂松. 不平顺路面的车辆动载诱发饱和地基的动应力响应[J]. 振动与冲击, 2016, 35(11): 93-101, 122. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm

    ZHOU Ren-yi, QIAN Jian-gu, HUANG Mao-song. Influences of vehicle dynamic load on dynamic stress in saturated poro-elastic ground[J]. Journal of Vibration and Shock, 2016, 35(11): 93–101, 122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201611016.htm
    [26]
    公路工程技术标准: JTG B01—2014[S]. 北京: 人民交通出版社, 2015.

    Technical Standard of Highway Engineering: JTG B01—2014[S]. Beijing: China Communications Press, 2015. (in Chinese)
  • Cited by

    Periodical cited type(8)

    1. 陈星,黄涛,彭道平,赵锐,刘运. 赤泥渗滤液对GCL多尺度孔隙结构及防渗性能影响. 安全与环境学报. 2024(01): 290-301 .
    2. 冯斌,徐滨. GCL膨润土衬垫膨胀量对渗透性能的影响. 新型建筑材料. 2024(03): 121-124 .
    3. 李天义,孙德安,傅贤雷,陈征,汪磊,杜延军. 考虑时变污染源与土工膜破损的污染物二维迁移特性. 岩土工程学报. 2024(11): 2450-2456 . 本站查看
    4. 林海,时花豹,周创兵,吕志涛. 黏土-膨润土混合土衬里的渗透特性试验研究. 材料导报. 2024(23): 96-101 .
    5. 刘志彬,王宇婷,罗婷倚,唐亚森,谢世平. GCL用于路基水分场调控可行性及铺设位置优化分析. 重庆交通大学学报(自然科学版). 2023(12): 53-60 .
    6. 王亮,杨华展,吴舒畅,罗昊进,汤泽和,于俊赞,丁昊,朱世俊. 市政污水管道渗漏污染物迁移数学解析模型. 给水排水. 2022(09): 117-123 .
    7. 倪佳琪,詹良通,冯嵩,孔令刚,丰田. 压实钢渣-膨润土覆盖防渗材料试验研究. 浙江大学学报(工学版). 2022(12): 2478-2486 .
    8. 康祺祯,李静静,李育超,姚士元,陈云敏. PAA-Na改性膨润土在酸碱盐溶液中的渗透性. 浙江大学学报(工学版). 2021(10): 1877-1884+1921 .

    Other cited types(1)

Catalog

    Article views (149) PDF downloads (20) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return