• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
QIU Yanling, DING Wenqi, ZHAO Tengteng, WANG Xiaoyong, QIAO Yafei. Asymmetrical deformation characteristics and mechanisms of deep excavations induced by one-side unloading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 199-206. DOI: 10.11779/CJGE20221074
Citation: QIU Yanling, DING Wenqi, ZHAO Tengteng, WANG Xiaoyong, QIAO Yafei. Asymmetrical deformation characteristics and mechanisms of deep excavations induced by one-side unloading[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 199-206. DOI: 10.11779/CJGE20221074

Asymmetrical deformation characteristics and mechanisms of deep excavations induced by one-side unloading

More Information
  • Received Date: August 28, 2022
  • Available Online: January 08, 2024
  • With the advancement of urban renewal, more and more excavations are being constructed under one-side unloading condition caused by the existing adjacent ones, resulting in different deformation characteristics and mechanisms compared to those of the normal excavations. Therefore, with the support of an asymmetrical deep excavation (34.3 m) that is induced by the adjacent one-side unloading in Shanghai, the site monitoring data (i.e. deflection of diaphragm wall, soil displacement, ground surface settlement, struct axial force and earth pressure) are collected and analyzed. The asymmetrical deformation characteristics of the deep excavation induced by unilateral unloading are then summarized, followed by a discussion of the corresponding mechanisms. The results show that the one-side unloading leads to the asymmetrical deformation of diaphragm wall. The displacement at the unloaded side reduces by 76% while that at the non-unloaded side increases by 72%, resulting in an increase of more than one times of the maximum surface settlement at the non-unloaded side. All these changes are the combined results of three mechanisms, including the reduced soil pressure at the unloaded side, the horizontal movement of retaining structures, and the change of the equivalent stiffness of supports in the unloaded direction. Therefore, the asymmetrical deformation of excavations should be fully considered during their design and construction. The equivalent stiffness of supports should be determined appropriately, and the rational monitoring warning indexes should be proposed for the unloading side and non-unloading side, respectively.
  • [1]
    王卫东, 徐中华, 王建华. 上海地区深基坑周边地表变形性状实测统计分析[J]. 岩土工程学报, 2011, 33(11): 1659-1666. http://cge.nhri.cn/cn/article/id/14412

    WANG Weidong, XU Zhonghua, WANG Jianhua. Statistical analysis of characteristics of ground surface settlement caused by deep excavations in Shanghai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1659-1666. (in Chinese) http://cge.nhri.cn/cn/article/id/14412
    [2]
    万星, 戈铭, 贺智江, 等. 南京软土地区基坑墙体变形性状研究[J]. 岩土工程学报, 2019, 41(增刊1): 85-88. doi: 10.11779/CJGE2019S1022

    WAN Xing, GE Ming, HE Zhijiang, et al. Characteristics of deformation of retaining wall due to deep excavation in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 85-88. (in Chinese) doi: 10.11779/CJGE2019S1022
    [3]
    丁智, 王达, 王金艳, 等. 浙江地区软弱土深基坑变形特点及预测分析[J]. 岩土力学, 2015, 36(增刊1): 506-512.

    DING Zhi, WANG Da, WANG Jinyan, et al. Deformation characteristics of Zhejiang soft soil deep foundation pits and their predictive analysis[J]. Rock and Soil Mechanics, 2015, 36(S1): 506-512. (in Chinese)
    [4]
    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅰ: bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928
    [5]
    吴昌将, 孙召花, 赖允瑾, 等. 软土地区地下连续墙深大基坑的变形性状研究[J]. 岩土力学, 2018, 39(增刊2): 245-253.

    WU Changjiang, SUN Zhaohua, LAI Yunjin, et al. Study of deformation characteristics of diaphragm wall induced by deep large excavation in soft soil region[J]. Rock and Soil Mechanics, 2018, 39(S2): 245-253. (in Chinese)
    [6]
    胡敏云, 寿树德, 袁静, 等. 软土相邻基坑支护结构受力影响特征及机理研究[J]. 浙江工业大学学报, 2022, 50(1): 111-118. doi: 10.3969/j.issn.1006-4303.2022.01.016

    HU Minyun, SHOU Shude, YUAN Jing, et al. Study on influence of excavation process of adjacent foundation pits[J]. Journal of Zhejiang University of Technology, 2022, 50(1): 111-118. (in Chinese) doi: 10.3969/j.issn.1006-4303.2022.01.016
    [7]
    黄开勇. 软土地区相邻深大基坑同步施工设计实践[J]. 地下空间与工程学报, 2019, 15(增刊2): 743-750.

    HUANG Kaiyong. Design application of adjacent large-scale deep excavations constructed simultaneously in soft soil area[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S2): 743-750. (in Chinese)
    [8]
    朱炎兵, 周小华, 魏仕锋, 等. 临近既有地铁车站的基坑变形性状研究[J]. 岩土力学, 2013, 34(10): 2997-3002.

    ZHU Yanbing, ZHOU Xiaohua, WEI Shifeng, et al. Investigation on deformation behaviors of foundation pit adjacent to existing metro stations[J]. Rock and Soil Mechanics, 2013, 34(10): 2997-3002. (in Chinese)
    [9]
    岳树桥, 左人宇, 陆钊. 相邻基坑有限宽度土条主动土压力的计算[J]. 岩土力学, 2016, 37(7): 2063-2069.

    YUE Shuqiao, ZUO Renyu, LU Zhao. A method for calculating active earth pressure of soil piece with a finite width between adjacent foundation pits[J]. Rock and Soil Mechanics, 2016, 37(7): 2063-2069. (in Chinese)
    [10]
    乔亚飞, 丁文其, 王军, 等. 无锡地区地铁车站深基坑变形特性[J]. 岩土工程学报, 2012, 34(增刊1): 761-766.

    QIAO Yafei, DING Wenqi, WANG Jun, et al. Deformation characteristics of deep excavations for metro stations in Wuxi[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(S1): 761-766. (in Chinese)
    [11]
    程康, 徐日庆, 应宏伟, 等. 杭州软黏土地区某30.2m深大基坑开挖性状实测分析[J]. 岩石力学与工程学报, 2021, 40(4): 851-863.

    CHENG Kang, XU Riqing, YING Hongwei, et al. Performance analysis of a 30.2m deep-large excavation in Hangzhou soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 851-863. (in Chinese)
    [12]
    HARAHAP S E, OU C Y. Finite element analysis of time-dependent behavior in deep excavations[J]. Computers and Geotechnics, 2020, 119: 103300. doi: 10.1016/j.compgeo.2019.103300
    [13]
    张有桔, 丁文其, 刘学增, 等. 不对称水压下基坑围护内力及变形规律分析[J]. 岩土工程学报, 2013, 35(增刊2): 107-112. http://cge.nhri.cn/cn/article/id/15366

    ZHANG Youjie, DING Wenqi, LIU Xuezeng, et al. Internal force and deformation of deep foundation pit under asymmetric water pressure[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 107-112. (in Chinese) http://cge.nhri.cn/cn/article/id/15366
    [14]
    TERZAGHI K, PECK R B. Soil Mechanics in Engineering Practice[M]. 2d ed. New York: Wiley, 1967.
  • Cited by

    Periodical cited type(15)

    1. 苗秋福. 高水平应力环境下层状岩体隧道稳定性分析. 公路交通科技. 2025(02): 196-206 .
    2. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 .
    3. 李元海,赵万勇,朱茂国,刘德柱,于恒. 软弱缓倾层状岩层隧道围岩结构变形与失稳机制试验研究. 采矿与安全工程学报. 2024(06): 1148-1157 .
    4. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 人工制备互层土的静三轴剪切力学特性研究. 岩土工程学报. 2023(04): 840-846 . 本站查看
    5. 赵雪,顾伟红. 基于人工蜂群优化支持向量机回归的隧道塌方风险预测. 科学技术与工程. 2023(09): 3997-4003 .
    6. 严志军. 公路隧道项目施工塌方成因及防控探讨. 交通科技与管理. 2023(09): 135-137 .
    7. 武靖勋. 某铁路隧道塌方综合处治技术. 国防交通工程与技术. 2023(05): 65-67+50 .
    8. 苗景川,肖鹏帅,洪富义,陈诺,李文杰,梁斌. 大凉山深埋软弱围岩公路隧道塌方机理及处治措施. 科学技术与工程. 2023(30): 13143-13149 .
    9. 李向峰. 软弱千枚岩塌方施工处理技术研究. 运输经理世界. 2022(15): 110-112 .
    10. 阮小勇,张佳. 顺层偏压隧道围岩破坏规律研究及施工控制技术. 科学技术创新. 2022(31): 158-161 .
    11. 耿启军. 富水全风化红砂岩地层隧道涌水涌砂机理及防治. 铁道建筑技术. 2022(12): 164-169 .
    12. 李荣锦,邹鑫,李荣建,林国强,白维仕,张瑾. 半嵌泥岩半覆黄土隧道模型试验及承载特性评价. 岩土工程学报. 2022(S1): 98-103 . 本站查看
    13. 王志杰,邱志洪,蔡李斌,张曾照,马兆飞,夏勇,徐海岩. 浩吉铁路阳城隧道全风化红砂岩围岩变形规律. 铁道建筑. 2021(09): 58-62 .
    14. 申志福,徐琪尔,朱玲裕,王志华,高洪梅. 重塑粉质黏土与粉砂互层土试样制备方法. 岩土工程学报. 2021(S2): 96-99 . 本站查看
    15. 王志杰,蔡李斌,邱志洪,芮小豪,马兆飞,程宏生,张曾照,徐海岩. 土砂互层隧道大变形控制技术研究——以浩吉铁路阳城隧道为例. 隧道建设(中英文). 2021(S2): 469-478 .

    Other cited types(22)

Catalog

    Article views PDF downloads Cited by(37)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return