• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Jun, LI Xiao-jun, LIANG Jian-wen. Seismic responses of underground tunnels subjected to obliquely incident seismic waves by 2.5D FE-BE coupling method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1846-1854. DOI: 10.11779/CJGE202210010
Citation: ZHU Jun, LI Xiao-jun, LIANG Jian-wen. Seismic responses of underground tunnels subjected to obliquely incident seismic waves by 2.5D FE-BE coupling method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1846-1854. DOI: 10.11779/CJGE202210010

Seismic responses of underground tunnels subjected to obliquely incident seismic waves by 2.5D FE-BE coupling method

More Information
  • Received Date: October 25, 2021
  • Available Online: December 11, 2022
  • A 2.5D finite element-boundary element (FE-BE) coupling method is proposed for the 3D seismic responses of an underground tunnel subjected to obliquely incident seismic waves. The tunnel linings are discretized with finite elements and the effects of the segment joints are simulated by spring elements, while the unbounded soil is modelled by the boundary element method based on the 3D dynamic stiffness matrix of a layered half-space and the Green's functions for moving distributed loads. The proposed 2.5D FE-BE coupling method is of high computation efficiency and accuracy, and its correctness is verified by comparing with the benchmark results in the literature. The 2.5D FE-BE coupling method is used to study the seismic responses of a shield tunnel, with an emphasis on the effects of the segment joints on the deformations and internal forces of the tunnel linings. Moreover, the applicability of the equivalent homogeneous lining model, which approximately considers the effects of segment joints by reducing the bending rigidity of the tunnel linings, is examined. It is shown that compared with a homogeneous tunnel, the shield tunnel can accommodate larger deformations while generate smaller internal forces. Furthermore, for the case of joints with large stiffness, the equivalent homogeneous model for linings can account for the effects of the segment joints to a certain degree, but it may lead to underestimation of the longitudinal bending moment of the tunnel linings.
  • [1]
    杜修力, 陈维, 李亮, 等. 斜入射条件下地下结构时域地震反应分析初探[J]. 震灾防御技术, 2007, 2(3): 290–296. doi: 10.3969/j.issn.1673-5722.2007.03.009

    DU Xiu-li, CHEN Wei, LI Liang, et al. Preliminary study of time-domain seismic response for underground structures to obliquely incident seismic waves[J]. Technology for Earthquake Disaster Prevention, 2007, 2(3): 290–296. (in Chinese) doi: 10.3969/j.issn.1673-5722.2007.03.009
    [2]
    禹海涛, 袁勇. 长大隧道地震响应分析与试验方法新进展[J]. 中国公路学报, 2018, 31(10): 19–35. doi: 10.3969/j.issn.1001-7372.2018.10.003

    YU Hai-tao, YUAN Yong. Review on seismic response analysis and test methods for long and large tunnels[J]. China Journal of Highway and Transport, 2018, 31(10): 19–35. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.10.003
    [3]
    刘晶波, 王艳, 赵冬冬. 地震波斜入射时地铁盾构隧道的动力反应分析[C]//第四届全国防震减灾工程学术研讨会论文集. 福州, 2009: 318–322.

    LIU Jing-bo, WANG Yan, ZHAO Dong-dong. The dynamic response of subway shield tunnel under oblique seismic waves[C]//Proceedings of the 4th National Symposium on Earthquake Prevention and Disaster Mitigation Engineering. Fuzhou, 2009: 318–322. (in Chinese)
    [4]
    傅方, 赵成刚, 李伟华, 等. SV波斜入射下局部地形对隧道地震响应的影响[J]. 北京交通大学学报, 2012, 36(6): 79–84. doi: 10.3969/j.issn.1673-0291.2012.06.015

    FU Fang, ZHAO Cheng-gang, LI Wei-hua, et al. Influence of local topographic on seismic response of tunnels subjected to obliquely incident SV waves[J]. Journal of Beijing Jiaotong University, 2012, 36(6): 79–84. (in Chinese) doi: 10.3969/j.issn.1673-0291.2012.06.015
    [5]
    路德春, 李云, 马超, 等. 斜入射地震作用下地铁车站结构抗震性能分析[J]. 北京工业大学学报, 2016, 42(1): 87–94. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201601014.htm

    LU De-chun, LI Yun, MA Chao, et al. Analysis of the three-dimensional seismic performance of underground[J]. Journal of Beijing University of Technology, 2016, 42(1): 87–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201601014.htm
    [6]
    耿萍, 陈昌健, 王琦, 等. 地震P波对圆形隧道最不利入射角研究[J]. 现代隧道技术, 2018, 55(增刊2): 579–587. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2075.htm

    GENG Ping, CHEN Chang-jian, WANG Qi, et al. Research on the most unfavorable incident angle of primary wave to circular tunnel[J]. Modern Tunnelling Technology, 2018, 55(S2): 579–587. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2075.htm
    [7]
    ST JOHN C M, ZAHRAH T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2): 165–197. doi: 10.1016/0886-7798(87)90011-3
    [8]
    小泉淳. 盾构隧道的抗震研究及算例[M]. 张稳军, 袁大军, 译. 北京: 中国建筑工业出版社, 2009.

    KOIZUMI A. Seismic Research and Examples of Shield Tunnels[M]. ZHANG Wen-jun, YUAN Da-jun, trans. Beijing: China Architecture & Building Press, 2009. (in Chinese)
    [9]
    ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al. Nonlinear response of deep immersed tunnel to strong seismic shaking[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(9): 1067–1090. doi: 10.1061/(ASCE)1090-0241(2007)133:9(1067)
    [10]
    ZHANG J, HE C, GENG P, et al. Improved longitudinal seismic deformation method of shield tunnels based on the iteration of the nonlinear stiffness of ring joints[J]. Sustainable Cities and Society, 2019, 45: 105–116. doi: 10.1016/j.scs.2018.11.019
    [11]
    MIAO Y, YAO E L, RUAN B, et al. Seismic response of shield tunnel subjected to spatially varying earthquake ground motions[J]. Tunnelling and Underground Space Technology, 2018, 77: 216–226. doi: 10.1016/j.tust.2018.04.006
    [12]
    陈国兴, 孙瑞瑞, 赵丁凤, 等. 海底盾构隧道纵向地震反应特征的子模型分析[J]. 岩土工程学报, 2019, 41(11): 1983–1991. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911003.htm

    CHEN Guo-xing, SUN Rui-rui, ZHAO Ding-feng, et al. Longitudinal seismic response characteristics of seabed shield tunnels using submodeling analysis[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 1983–1991. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911003.htm
    [13]
    赵宝友, 马震岳, 梁冰, 等. 考虑地震动行波效应的大型岩体地下洞室动力非线性反应分析[J]. 岩石力学与工程学报, 2010, 29(S1): 3370–3377. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1114.htm

    ZHAO Bao-you, MA Zhen-yue, LIANG Bing, et al. Dynamic nonlinear response of a large underground rock cavern subjected to seismic motion considering wave passage effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1): 3370–3377. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2010S1114.htm
    [14]
    FABOZZI S, BILOTTA E, YU H, et al. Effects of the asynchronism of ground motion on the longitudinal behaviour of a circular tunnel[J]. Tunnelling and Underground Space Technology, 2018, 82: 529–541. doi: 10.1016/j.tust.2018.09.005
    [15]
    LI P, SONG E X. Three-dimensional numerical analysis for the longitudinal seismic response of tunnels under an asynchronous wave input[J]. Computers and Geotechnics, 2015, 63: 229–243. doi: 10.1016/j.compgeo.2014.10.003
    [16]
    HUANG J Q, DU X L, ZHAO M, et al. Impact of incident angles of earthquake shear (S) waves on 3-D non-linear seismic responses of long lined tunnels[J]. Engineering Geology, 2017, 222: 168–185. doi: 10.1016/j.enggeo.2017.03.017
    [17]
    王国波, 巴峰, 孙富学, 等. 非一致激励下长大盾构隧道结构地震响应分析[J]. 岩土工程学报, 2020, 42(7): 1228–1237. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007010.htm

    WANG Guo-bo, BA Feng, SUN Fu-xue, et al. Seismic response analysis of long shield tunnels under non-uniform excitation[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1228–1237. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202007010.htm
    [18]
    FRANÇOIS S, SCHEVENELS M, GALVÍN P, et al. A 2.5D coupled FE-BE methodology for the dynamic interaction between longitudinally invariant structures and a layered halfspace[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(23/24): 1536–1548. https://www.sciencedirect.com/science/article/pii/S0045782510000022
    [19]
    ZHOU S H, HE C, GUO P J, et al. Dynamic response of a segmented tunnel in saturated soil using a 2.5-D FE-BE methodology[J]. Soil Dynamics and Earthquake Engineering, 2019, 120: 386–397. https://www.sciencedirect.com/science/article/pii/S0267726118311321
    [20]
    LIN K C, HUNG H H, YANG J P, et al. Seismic analysis of underground tunnels by the 2.5D finite/infinite element approach[J]. Soil Dynamics and Earthquake Engineering, 2016, 85: 31–43. https://www.sciencedirect.com/science/article/pii/S0267726116000592
    [21]
    梁建文, 巴振宁. 三维层状场地的精确动力刚度矩阵及格林函数[J]. 地震工程与工程振动, 2007, 27(5): 7–17. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200705002.htm

    LIANG Jian-wen, BA Zhen-ning. Exact dynamic stiffness matrices of 3-D layered site and its Green's functions[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(5): 7–17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200705002.htm
    [22]
    BA Z N, LIANG J W. 2.5D scattering of incident plane SV waves by a canyon in layered half-space[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(4): 587–595. doi: 10.1007/s11803-010-0040-2
    [23]
    LIAO W I, YEH C S, TENG T J. Scattering of elastic waves by a buried tunnel under obliquely incident waves using T matrix[J]. Journal of Mechanics, 2011, 24(4): 405–418. https://www.cambridge.org/core/journals/journal-of-mechanics/article/scattering-of-elastic-waves-by-a-buried-tunnel-under-obliquely-incident-waves-using-t-matrix/865C93FD600B2695AAF6EB1F8CF4B966
    [24]
    DO N A, DIAS D, ORESTE P, et al. 2D numerical investigation of segmental tunnel lining under seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 72: 66–76. https://www.sciencedirect.com/science/article/pii/S0267726115000184
    [25]
    地下结构抗震设计标准: GB/T 51336—2018[S]. 北京: 中国建筑工业出版社, 2018.

    Standard for Seismic Design of Underground Structures: GB/T 51336—2018[S]. Beijing: China Architecture & Building Press, 2018. (in Chinese)
  • Related Articles

    [1]HAN Xun, WANG Mo-pan, WU Ying-li. Numerical analysis of deformation and stability of bucket foundation revetment under backfill loads[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 88-91. DOI: 10.11779/CJGE2021S2021
    [2]WANG Long, ZHU Chang-gen, XU Ke-feng, YU Jian, LÜ Xi-lin. Numerical simulation of deformation control during excavation of deep foundation pit in soft soil with newly filled soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 84-87. DOI: 10.11779/CJGE2021S2020
    [3]HUANG Ying-chao, XU Yang-qing. Numerical simulation analysis of dewatering and recharge process of deep foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 299-303. DOI: 10.11779/CJGE2014S2053
    [4]XU Zhen, LAI Ying, MEI Guo-xiong. Numerical simulation of water-discharging pressure-relief technology on anti-floating of swimming pools[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 451-455.
    [5]KONG De-sen, ZHANG Qiu-hua, SHI Ming-chen. Numerical simulation of model tests on inclined retaining piles in foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 408-411.
    [6]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [7]WEN Song-lin, REN Jia-li. Numerical simulation of non-conforming deformation feature between pile foundation and canal slope[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 178-183.
    [8]RUI Rui, XIA Yuanyou. Numerical simulation and comparison of pile-net composite foundation with pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 769-772.
    [9]GAO Qian, SONG Jianguo, YU Weijian, WANG Zhenghui. Design and numerical simulation of rock bolting and shotcrete for deep tunnels with high stress in Jinchuan Mine[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 279-284.
    [10]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return