Citation: | LIU Wen-hua, YANG Qing, KONG Gang-qiang, LI Wu-gang, LIN Xin-yi, HONG Guo-qian, WANG Zhong-tao. Mechanical properties and elastoplastic constitutive model of undisturbed marine sediment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1837-1845. DOI: 10.11779/CJGE202210009 |
[1] |
孔令伟, 吕海波, 汪稔, 等. 湛江海域结构性海洋土的工程特性及其微观机制[J]. 水利学报, 2002, 33(9): 82–88. doi: 10.3321/j.issn:0559-9350.2002.09.015
KONG Ling-wei, LÜ Hai-bo, WANG Ren, et al. Engineering properties and micro-mechanism of structural marine soil in Zhanjiang Sea area[J]. Journal of Hydraulic Engineering, 2002, 33(9): 82–88. (in Chinese) doi: 10.3321/j.issn:0559-9350.2002.09.015
|
[2] |
CHEN B, SUN D A, YUN-SHI H. Experimental study on strength characteristics and microscopic mechanism of marine soft clays[J]. Marine Georesources & Geotechnology, 2020, 38(5): 570–582.
|
[3] |
NIAN T K, JIAO H B, FAN N, et al. Microstructure analysis on the dynamic behavior of marine clay in the South China Sea[J]. Marine Georesources & Geotechnology, 2020, 38(3): 349–362.
|
[4] |
郭小青, 朱斌, 刘晋超, 等. 珠江口海洋软土不排水抗剪强度及循环弱化特性试验研究[J]. 岩土力学, 2016, 37(4): 1005–1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604013.htm
GUO Xiao-qing, ZHU Bin, LIU Jin-chao, et al. Experimental study of undrained shear strength and cyclic degradation behaviors of marine clay in Pearl River Estuary[J]. Rock and Soil Mechanics, 2016, 37(4): 1005–1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604013.htm
|
[5] |
任玉宾, 王胤, 杨庆. 典型深海软黏土全流动循环软化特性与微观结构探究[J]. 岩土工程学报, 2019, 41(8): 1562–1568. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908025.htm
REN Yu-bin, WANG Yin, YANG Qing. Full-flow cyclic degradation and micro-structure of representative deep-sea soft clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1562–1568. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908025.htm
|
[6] |
LIU M D, CARTER J P. A structured Cam-clay model[J]. Canadian Geotechnical Journal, 2002, 39(6): 1313–1332. doi: 10.1139/t02-069
|
[7] |
万征, 孟达, 宋琛琛, 等. 状态变量相关三维饱和黏土结构性本构模型[J]. 岩石力学与工程学报, 2020, 39(4): 817–828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004015.htm
WAN Zheng, MENG Da, SONG Chen-chen, et al. A three-dimensional structural constitutive model of saturated clays related to state variables[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 817–828. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202004015.htm
|
[8] |
JIANG J H, LING H I, YANG L. Approximate simulation of natural structured soft clays using a simplified bounding surface model[J]. International Journal of Geomechanics, 2017, 17(7): 06016044. doi: 10.1061/(ASCE)GM.1943-5622.0000864
|
[9] |
XIAO H W, LEE F H, LIU Y. Bounding surface cam-clay model with cohesion for cement-admixed clay[J]. International Journal of Geomechanics, 2017, 17(1): 04016026. doi: 10.1061/(ASCE)GM.1943-5622.0000671
|
[10] |
OURIA A. Disturbed state concept–based constitutive model for structured soils[J]. International Journal of Geomechanics, 2017, 17(7): 04017008. doi: 10.1061/(ASCE)GM.1943-5622.0000883
|
[11] |
袁庆盟, 孔亮, 赵亚鹏. 考虑水合物填充和胶结效应的深海能源土弹塑性本构模型[J]. 岩土力学, 2020, 41(7): 2304–2312, 2341. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007017.htm
YUAN Qing-meng, KONG Liang, ZHAO Ya-peng. An elastoplastic model for energy soils considering filling and bonding effects[J]. Rock and Soil Mechanics, 2020, 41(7): 2304–2312, 2341. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202007017.htm
|
[12] |
蒋明镜, 刘俊, 周卫, 等. 一个深海能源土弹塑性本构模型[J]. 岩土力学, 2018, 39(4): 1153–1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm
JIANG Ming-jing, LIU Jun, ZHOU Wei, et al. An elasto-plastic constitutive model for methane hydrate bearing sediments[J]. Rock and Soil Mechanics, 2018, 39(4): 1153–1158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804001.htm
|
[13] |
土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.
Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)
|
[14] |
土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[15] |
BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329-378.
|
[16] |
李作勤. 有结构强度的欠压密土的力学特性[J]. 岩土工程学报, 1982, 4(1): 34–45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198201003.htm
LI Zuo-qin. Mechanical characteristics of under-consolidated clay soils with structural strength[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(1): 34–45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198201003.htm
|
[17] |
HONG Z S, LIU S Y, SHEN S L, et al. Comparison in undrained shear strength between undisturbed and remolded ariake clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(2): 272–275. doi: 10.1061/%28ASCE%291090-0241%282006%29132%3A2%28272%29
|
[18] |
BUSCH W H, KELLER G H. Consolidation characteristics of sediments from the Peru-Chile continental margin and implications for past sediment instability[J]. Marine Geology, 1982, 45(1/2): 17–39. https://www.sciencedirect.com/science/article/pii/0025322782901785
|
[19] |
BAUDET B, STALLEBRASS S. A constitutive model for structured clays[J]. Géotechnique, 2004, 54(4): 269–278. doi: 10.1680/geot.2004.54.4.269
|
[20] |
YANG C, CARTER J P, SHENG D C. Description of compression behaviour of structured soils and its application[J]. Canadian Geotechnical Journal, 2014, 51(8): 921–933.
|
[21] |
LIU W H, LI W G, and SUN X L. New approach to interpret the mechanical behavior of structured soils[J]. International Journal of Geomechanics, 2021, 21(2): 06020040.
|
[22] |
ROTTA G V, CONSOLI N C, PRIETTO P D M, et al. Isotropic yielding in an artificially cemented soil cured under stress[J]. Géotechnique, 2003, 53(5): 493–501 doi: 10.1680/geot.2003.53.5.493
|
[23] |
NGUYEN L D, FATAHI B, KHABBAZ H. A constitutive model for cemented clays capturing cementation degradation[J]. International Journal of Plasticity, 2014, 56: 1–18. https://www.sciencedirect.com/science/article/pii/S0749641914000163
|