Citation: | ZHOU Ya-dong, ZHAI Xin-dong, YANG Wen-qing. One-dimensional coupled model for large-deformation electroosmotic consolidation and heavy metal ion migration of silt[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1827-1836. DOI: 10.11779/CJGE202210008 |
[1] |
周建, 魏利闯, 詹芳蕾, 等. 生物表面活性剂及其与柠檬酸联合用于污泥重金属电动修复[J]. 湖南大学学报(自然科学版), 2019, 46(6): 109–119. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201906016.htm
ZHOU Jian, WEI Li-chuang, ZHAN Fang-lei, et al. Electrokinetic repair of heavy metals in sludge by biosurfactant and its combination with citric acid[J]. Journal of Hunan University (Natural Sciences), 2019, 46(6): 109–119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX201906016.htm
|
[2] |
TUAN P A, SILLANPÄÄ M. Migration of ions and organic matter during electro-dewatering of anaerobic sludge[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 54–61.
|
[3] |
TANG X Q, LI Q Y, WANG Z H, et al. Improved isolation of cadmium from paddy soil by novel technology based on pore water drainage with graphite-contained electro-kinetic geosynthetics[J]. Environmental Science and Pollution Research International, 2018, 25(14): 14244–14253. doi: 10.1007/s11356-018-1664-4
|
[4] |
ESRIG M I. Pore pressure, consolidation and electrokinetics[J]. Journal of the SMFD, ASCE, 1968, 94(SM4): 899–921.
|
[5] |
HU L, WU W, WU H. Numerical model of electro-osmotic consolidation in clay[J]. Géotechnique, 2012, 62(6): 537–541. doi: 10.1680/geot.11.T.008
|
[6] |
吴辉, 胡黎明. 考虑电导率变化的电渗固结模型[J]. 岩土工程学报, 2013, 35(4): 734–738. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304020.htm
WU Hui, HU Li-ming. Numerical simulation of electro-osmosis consolidation considering variation of electrical conductivity[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 734–738. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201304020.htm
|
[7] |
王军, 符洪涛, 蔡袁强, 等. 线性堆载下软黏土一维电渗固结理论与试验分析[J]. 岩石力学与工程学报, 2014, 33(1): 179–188. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm
WANG Jun, FU Hong-tao, CAI Yuan-qiang, et al. Analyses of one-dimensional electroosmotic consolidation theory and test of soft clay under linear load[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 179–188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401021.htm
|
[8] |
FELDKAMP J R, BELHOMME G M. Large-strain electrokinetic consolidation: theory and experiment in one dimension[J]. Géotechnique, 1990, 40(4): 557–568. doi: 10.1680/geot.1990.40.4.557
|
[9] |
王柳江, 刘斯宏, 王子健, 等. 堆载–电渗联合作用下的一维非线性大变形固结理论[J]. 工程力学, 2013, 30(12): 91–98. doi: 10.6052/j.issn.1000-4750.2012.04.0303
WANG Liu-jiang, LIU Si-hong, WANG Zi-jian, et al. A consolidation theory for one-dimensional large deformation problems under combined action of load and electroosmosis[J]. Engineering Mechanics, 2013, 30(12): 91–98. (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.04.0303
|
[10] |
YUAN J, HICKS M A. Large deformation elastic electro-osmosis consolidation of clays[J]. Computers and Geotechnics, 2013, 54: 60–68. doi: 10.1016/j.compgeo.2013.05.012
|
[11] |
YUAN J, HICKS M A. Numerical simulation of elasto-plastic electro-osmosis consolidation at large strain[J]. Acta Geotechnica, 2016, 11(1): 127–143. doi: 10.1007/s11440-015-0366-z
|
[12] |
ZHOU Y D, DENG A, WANG C. Finite-difference model for one-dimensional electro-osmotic consolidation[J]. Computers and Geotechnics, 2013, 54: 152–165. doi: 10.1016/j.compgeo.2013.06.003
|
[13] |
冯源. 城市污水污泥电动脱水机理试验研究及多场耦合作用理论分析[D]. 杭州: 浙江大学, 2012.
FENG Yuan. Experimental Study on Electrokinetic Dewatering Mechanism of Sewage Sludge and Theoretical Analyses of Multi-Field Coupled Phenomenon[D]. Hangzhou: Zhejiang University, 2012. (in Chinese)
|
[14] |
CORAPCIOGLU M Y. Formulation of electro- chemicoosmotic processes in soils[J]. Transport in Porous Media, 1991, 6(4): 435–444.
|
[15] |
ALSHAWABKEH A N, ACAR Y B. Removal of contaminants from soils by electrokinetics: a theoretical treatise[J]. Journal of Environmental Science and Health Part A: Environmental Science and Engineering and Toxicology, 1992, 27(7): 1835–1861. doi: 10.1080/10934529209375828
|
[16] |
ALSHAWABKEH A N, ACAR Y B. Electrokinetic remediation: II theoretical model[J]. Journal of Geotechnical Engineering, 1996, 122(3): 186–196. doi: 10.1061/(ASCE)0733-9410(1996)122:3(186)
|
[17] |
YEUNG A T, DATLA S. Fundamental formulation of electrokinetic extraction of contaminants from soil[J]. Canadian Geotechnical Journal, 1995, 32(4): 569–583. doi: 10.1139/t95-060
|
[18] |
AL-HAMDAN A Z, REDDY K R. Electrokinetic remediation modeling incorporating geochemical effects[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 91–105. doi: 10.1061/(ASCE)1090-0241(2008)134:1(91)
|
[19] |
MASI M, CECCARINI A, IANNELLI R. Multi species reactive transport modelling of electrokinetic remediation of harbour sediments[J]. Journal of Hazardous Materials, 2017, 326: 187–196. doi: 10.1016/j.jhazmat.2016.12.032
|
[20] |
GOODISMAN J. Electrochemistry: Theoretical Foundations, Quantum and Statistical Mechanics, Thermodynamics, the Solid State[M]. New York: Wiley, 1987.
|
[21] |
YEUNG A T, HSU C N, MENON R M. Electrokinetic extraction of lead from kaolinites: I numerical modeling[J]. The Environmentalist, 2011, 31(1): 26–32. doi: 10.1007/s10669-010-9295-4
|
[22] |
KIM S O, KIM J J, KIM K W, et al. Models and experiments on electrokinetic removal of Pb(II) from kaolinite clay[J]. Separation Science and Technology, 2005, 39(8): 1927–1951. doi: 10.1081/SS-120030775
|
[23] |
ACAR Y B, ALSHAWABKEH A N. Electrokinetic remediation I: pilot-scale tests with lead-spiked kaolinite[J]. Journal of Geotechnical Engineering, 1996, 122(3): 173–185. doi: 10.1061/(ASCE)0733-9410(1996)122:3(173)
|
[24] |
YONG R N, WARKENTIN B P, PHADUNGCHEWIT Y, et al. Buffer capacity and lead retention in some clay materials[J]. Water, Air, and Soil Pollution, 1990, 53(1/2): 53–67.
|
[1] | LIU Shuang, LIU Hanlong, XIAO Yang. Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253 |
[2] | GAO You, SUN De-an, ZHANG Jun-ran, LUO Ting. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191-2196. DOI: 10.11779/CJGE201912003 |
[3] | YE Yun-xue, ZOU Wei-lie, HAN Zhong, LIU Xiao-wen. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. DOI: 10.11779/CJGE201905016 |
[4] | YE Yun-xue, ZOU Wei-lie, YUAN Fei, LIU Jia-guo. Predicating soil-water characteristic curves of soils with different initial void ratios based on a pedotransfer function[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2305-2311. DOI: 10.11779/CJGE201812019 |
[5] | WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019 |
[6] | LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021 |
[7] | ZOU Wei-lie, WANG Xie-qun, LUO Fang-de, ZHANG Jun-feng, YE Yun-xue, HU Zhong-wei. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. DOI: 10.11779/CJGE201709020 |
[8] | MA Shao-kun, HUANG Yan-zhen, CHEN Xin, JIANG Jie, SHAO Yu. Influence of excavation on adjacent rigid-flexible piles considering change of void ratio coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 140-145. DOI: 10.11779/CJGE2014S2024 |
[9] | CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004 |
[10] | MA Shao-kun<sup>1, 2, 3</sup>, SHAO Yu<sup>2, 3</sup>, HUANG Yan-zhen<sup>2, 3</sup>. Deformation of deep foundation pits due to excavation considering change of void ratio and permeability coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 940-944. |
1. |
冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 .
![]() | |
2. |
胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 .
![]() | |
3. |
唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 .
![]() | |
4. |
刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 .
![]() | |
5. |
喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 .
![]() | |
6. |
张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 .
![]() | |
7. |
刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 .
![]() | |
8. |
程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 .
![]() | |
9. |
刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 .
![]() | |
10. |
张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 .
![]() | |
11. |
薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 .
![]() | |
12. |
刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 .
![]() | |
13. |
刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 .
![]() | |
14. |
方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 .
![]() | |
15. |
蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 .
![]() | |
16. |
赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 .
![]() | |
17. |
马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 .
![]() | |
18. |
刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 .
![]() | |
19. |
马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 .
![]() | |
20. |
吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
![]() | |
21. |
关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 .
![]() | |
22. |
孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 .
![]() | |
23. |
邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 .
![]() | |
24. |
王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
![]() | |
25. |
王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
![]() | |
26. |
张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 .
![]() | |
27. |
陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 .
![]() |