• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Wenhao, LI Jiangshan, FENG Chen. Coupled model for one-dimensional nonlinear consolidation and contaminant transport in a compacted clay liner considering mechanical-chemical loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2289-2298. DOI: 10.11779/CJGE20220980
Citation: JIANG Wenhao, LI Jiangshan, FENG Chen. Coupled model for one-dimensional nonlinear consolidation and contaminant transport in a compacted clay liner considering mechanical-chemical loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2289-2298. DOI: 10.11779/CJGE20220980

Coupled model for one-dimensional nonlinear consolidation and contaminant transport in a compacted clay liner considering mechanical-chemical loading

More Information
  • Received Date: July 31, 2022
  • Available Online: March 09, 2023
  • For the coupled process of one-dimensional consolidation and contaminant transport in a compacted clay liner under mechanical-chemical loading, the corresponding coupled model is established by considering the nonlinear changes of compressibility and permeability of soils, and the finite difference method is adopted for solving the model. The correctness of the proposed coupled model is validated by comparing its results with the calculation ones of the finite element software COMSOL Multiphysics and the existing analytical solution. Based on the proposed model, the effects of mechanical loading pu and contaminant concentration Cb in leachate on the coupled process under two assumptions are compared and investigated. The results show that when the nonlinear compressibility and permeability characteristics are neglected, the increase of pu reduces the transport rate of contaminants. However, when the nonlinear compressibility and permeability characteristics are considered, the increase of pu leads to the increase of transport rate, which is mainly due to the comprehensive effects of advection and diffusion on the transport process. The increase of Cb increases the settlement, reduces the excess pore water pressure and decreases the transport rate of contaminants. Compared with the case of ignoring nonlinearity, the effects of Cb on the settlement, excess pore water pressure and transport rate of contaminants are reduced when the nonlinearity is considered.
  • [1]
    谢海建, 詹良通, 陈云敏, 等. 我国四类衬垫系统防污性能的比较分析[J]. 土木工程学报, 2011, 44(7): 133-141. doi: 10.15951/j.tmgcxb.2011.07.004

    XIE Haijian, ZHAN Liangtong, CHEN Yunmin, et al. Comparison of the performance of four types of liner systems in China[J]. China Civil Engineering Journal, 2011, 44(7): 133-141. (in Chinese) doi: 10.15951/j.tmgcxb.2011.07.004
    [2]
    李涛, 刘利, 丁洲祥. 大变形黏土防渗层中的污染物迁移和转化规律研究[J]. 岩土力学, 2012, 33(3): 687-694. doi: 10.3969/j.issn.1000-7598.2012.03.007

    LI Tao, LIU Li, DING Zhouxiang. Study of transport and transformation of contaminant through a clay layer with large deformation[J]. Rock and Soil Mechanics, 2012, 33(3): 687-694. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.03.007
    [3]
    张志红, 师玉敏, 朱敏. 黏土垫层水力-力学-化学耦合模型研究[J]. 岩土工程学报, 2016, 38(7): 1283-1290. doi: 10.11779/CJGE201607016

    ZHANG Zhihong, SHI Yumin, ZHU Min. Coupled hydro-mechanical-chemical model for clay liner[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1283-1290. (in Chinese) doi: 10.11779/CJGE201607016
    [4]
    邱金伟, 权全, 刘军, 等. 考虑非等温环境下污染物在黏土中的运移解析模型[J]. 岩土力学, 2022, 43(2): 423-431, 442. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202014.htm

    QIU Jinwei, QUAN Quan, LIU Jun, et al. Analytical solutions of contaminant transport in clay liner system under non-isothermal condition[J]. Rock and Soil Mechanics, 2022, 43(2): 423-431, 442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202014.htm
    [5]
    谢海建, 严华祥, 张春华, 等. 考虑固结、扩散和降解耦合作用下污染物在黏土中的运移解析模型[J]. 水利学报, 2015, 46(增刊1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1023.htm

    XIE Haijian, YAN Huaxiang, ZHANG Chunhua, et al. Analytical models for contaminant transport in clayey soils considering coupled effect of consolidation, diffusion and degradation[J]. Journal of Hydraulic Engineering, 2015, 46(S1): 124-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB2015S1023.htm
    [6]
    SMITH D W. One-dimensional contaminant transport through a deforming porous medium: theory and a solution for a quasi-steady-state problem[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24: 693-722. doi: 10.1002/1096-9853(200007)24:8<693::AID-NAG91>3.0.CO;2-E
    [7]
    PETERS G P, SMITH D W. Solute transport through a deforming porous medium[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(7): 683-717. doi: 10.1002/nag.219
    [8]
    ALSHAWABKEH A N, RAHBAR N. Parametric study of one-dimensional solute transport in deformable porous media[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(8): 1001-1010. doi: 10.1061/(ASCE)1090-0241(2006)132:8(1001)
    [9]
    LEWIS T W, PIVONKA P, FITYUS S G, et al. Parametric sensitivity analysis of coupled mechanical consolidation and contaminant transport through clay barriers[J]. Computers and Geotechnics, 2009, 36(1/2): 31-40.
    [10]
    LEWIS T W, PIVONKA P, SMITH D W. Theoretical investigation of the effects of consolidation on contaminant transport through clay barriers[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(1): 95-116. doi: 10.1002/nag.708
    [11]
    PU H F, FOX P J, SHACKELFORD C D. Assessment of consolidation-induced contaminant transport for compacted clay liner systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(3): 04015091. doi: 10.1061/(ASCE)GT.1943-5606.0001426
    [12]
    李江山, 江文豪, 葛尚奇, 等. 非等温分布条件下压实黏土衬垫中固结与污染物运移耦合模型研究[J]. 岩土工程学报, 2022, 44(11): 2071-2080. doi: 10.11779/CJGE202211013

    LI Jiangshan, JIANG Wenhao, GE Shangqi, et al. Coupling model for consolidation and contaminant transport in compacted clay liners under non-isothermal condition[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2071-2080. (in Chinese) doi: 10.11779/CJGE202211013
    [13]
    FRITZ S J. Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214-223. doi: 10.1346/CCMN.1986.0340212
    [14]
    KACZMAREK M, HUECKEL T. Chemo-mechanical consolidation of clays: analytical solutions for a linearized one-dimensional problem[J]. Transport in Porous Media, 1998, 32(1): 49-74. doi: 10.1023/A:1006530405361
    [15]
    KACZMAREK M. Chemically induced deformation of a porous layer coupled with advective-dispersive transport. Analytical solutions[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(8): 757-770. doi: 10.1002/nag.150
    [16]
    PETERS G P, SMITH D W. The influence of advective transport on coupled chemical and mechanical consolidation of clays[J]. Mechanics of Materials, 2004, 36(5/6): 467-486.
    [17]
    张志红, 师玉敏. 双荷载共同作用下土体变形影响机理及计算方法[J]. 东南大学学报(自然科学版), 2016, 46(增刊1): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1026.htm

    ZHANG Zhihong, SHI Yumin. Influence mechanism and calculation method for soil deformation under double load[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(S1): 148-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1026.htm
    [18]
    ZHANG Z H, MASUM S A, THOMAS H R, et al. Modeling fully coupled hydraulic-mechanical-chemical processes in a natural clay liner under mechanical and chemico-osmotic consolidation[J]. Environmental Science and Pollution Research, 2018, 25(36): 36173-36183.
    [19]
    ZHANG Z H, MASUM S A, TIAN G L, et al. Modelling non-isothermal volume change and solute transport behaviours of a semi-permeable clay soil under the combined influence of mechanical loading, chemical-osmosis, and thermo-osmosis[J]. Engineering Geology, 2021, 293: 106271.
    [20]
    田改垒, 张志红. 考虑热效应的污染物在土中扩散、渗透和固结耦合模型[J]. 岩土工程学报, 2022, 44(2): 278-287. doi: 10.11779/CJGE202202009

    TIAN Gailei, ZHANG Zhihong. Coupled model for contaminant diffusion, osmosis and consolidation in soil considering thermal effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 278-287. (in Chinese) doi: 10.11779/CJGE202202009
    [21]
    CHEN Y M, ZHAN T L T, WEI H Y, et al. Aging and compressibility of municipal solid wastes[J]. Waste Management, 2009, 29(1): 86-95.
    [22]
    FENG S J, GAO K W, CHEN Y X, et al. Geotechnical properties of municipal solid waste at Laogang Landfill, China[J]. Waste Management, 2017, 63: 354-365.
    [23]
    YU Y, ROWE R K. Modelling deformation and strains induced by waste settlement in a centrifuge test[J]. Canadian Geotechnical Journal, 2018, 55(8): 1116-1129.
    [24]
    PU H F, QIU J W, ZHANG R J, et al. Assessment of consolidation-induced VOC transport for a GML/GCL/CCL composite liner system[J]. Geotextiles and Geomembranes, 2018, 46(4): 455-469.
    [25]
    LI J S, JIANG W H, GE S Q, et al. General analytical solutions for one-dimensional nonlinear consolidation of saturated clay under non-isothermal distribution condition[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2022, 46(10): 1811-1830.
    [26]
    庄迎春, 刘世明, 谢康和. 萧山软粘土一维固结系数非线性研究[J]. 岩石力学与工程学报, 2005, 24(24): 4565-4569. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200524026.htm

    ZHUANG Yingchun, LIU Shiming, XIE Kanghe. Study on nonlinearity of one-dimensional consolidation coefficient of Xiaoshan clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4565-4569. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200524026.htm
    [27]
    ABBASI N, RAHIMI H, JAVADI A A, et al. Finite difference approach for consolidation with variable compressibility and permeability[J]. Computers and Geotechnics, 2007, 34(1): 41-52.
    [28]
    齐添. 软土一维非线性固结理论与试验对比研究[D]. 杭州: 浙江大学, 2008.

    QI Tian. Theoretical and Experimental Studies on One-Dimensional Nonlinear Consolidation of Soft Soil[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    [29]
    刘建国, 王洪涛, 聂永丰. 多孔介质中溶质有效扩散系数预测的分形模型[J]. 水科学进展, 2004, 15(4): 458-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200404010.htm

    LIU Jianguo, WANG Hongtao, NIE Yongfeng. Fractal model for predicting effective diffusion coefficient of solute in porous media[J]. Advances in Water Science, 2004, 15(4): 458-462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200404010.htm
    [30]
    LEE J, FOX P J, LENHART J J. Investigation of consolidation-induced solute transport: I effect of consolidation on transport parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1228-1238.
    [31]
    LI C X, HUANG J S, WU L Z, et al. Approximate analytical solutions for one-dimensional consolidation of a clay layer with variable compressibility and permeability under a ramp loading[J]. International Journal of Geomechanics, 2018, 18(11): 06018032.
  • Cited by

    Periodical cited type(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 .
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 .
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 .
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 .
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 .
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 .
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return