• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Qi, WANG Haojie, DONG Peng, ZHANG Xiaoping, LIU Quansheng, FU Shaojun. Deformations of surrounding rock and stress characteristics of steel arch of Hanjiang-Weihe River water diversion tunnel[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2180-2187. DOI: 10.11779/CJGE20220941
Citation: ZHANG Qi, WANG Haojie, DONG Peng, ZHANG Xiaoping, LIU Quansheng, FU Shaojun. Deformations of surrounding rock and stress characteristics of steel arch of Hanjiang-Weihe River water diversion tunnel[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2180-2187. DOI: 10.11779/CJGE20220941

Deformations of surrounding rock and stress characteristics of steel arch of Hanjiang-Weihe River water diversion tunnel

More Information
  • Received Date: July 31, 2022
  • Available Online: March 09, 2023
  • The Hanjiang-Weihe River water diversion tunnel has high in-situ stress, high rock strength, strong excavation disturbance and complex geological conditions. During the excavation process, the supporting structures sometimes become unstable and fail, which seriously threatens the safety of workers, equipments and properties. To better understand the safety state of supporting structures, for the Lingbei project of the Qinling Tunnel, the convergent deformations of surrounding rock and the stress on the inner and outer flanges of the steel arch are monitored to analyze their distribution characteristics and evolution process. The analysis results show that the deformations of the surrounding rock can be divided into three stages, rapid deformation period, deformation period, and slow deformation period. The deformations mainly occur within 60 hours of the excavation, accounting for approximately 45% of the total deformations. The stress characteristics of steel arch are complicated. The stress applied on the steel arch is asymmetric, and the overall performance is mainly compression. By analyzing its axial forces and bending moments, the safety state of the arch frame can be identified.
  • [1]
    冯夏庭, 陈炳瑞, 张传庆. 岩爆孕育过程的机制、预警与动态调控[M]. 北京: 科学出版社, 2013.

    FENG Xiating, CHEN Bingrui, ZHANG Chuanqing. Mechanism, Warning and Dynamic Control of Rockburst Development Processes[M]. Beijing: Science Press, 2013. (in Chinese)
    [2]
    胡小川, 苏国韶, 陈冠言, 等. 深埋隧洞硬岩板裂化过程试验研究[J]. 岩土工程学报, 2020, 42(12): 2271-2280. doi: 10.11779/CJGE202012014

    HU Xiaochuan, SU Guoshao, CHEN Guanyan, et al. Experimental study on slabbing process of hard rock in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2271-2280. (in Chinese) doi: 10.11779/CJGE202012014
    [3]
    DIEDERICHS M S, KAISER P K, EBERHARDT E. Damageinitiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812. doi: 10.1016/j.ijrmms.2004.02.003
    [4]
    DIEDERICHS M S. The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling[J]. Canadian Geotechnical Journal, 2007, 44(9): 1082-1116. doi: 10.1139/T07-033
    [5]
    孙振宇, 张顶立, 侯艳娟, 等. 基于现场实测数据统计的隧道围岩全过程变形规律及稳定性判据确定[J]. 岩土工程学报, 2021, 43(7): 1261-1270. doi: 10.11779/CJGE202107011

    SUN Zhenyu, ZHANG Dingli, HOU Yanjuan, et al. Whole-process deformation laws and determination of stability criterion of surrounding rock of tunnels based on statistics of field measured data[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1261-1270. (in Chinese) doi: 10.11779/CJGE202107011
    [6]
    魏进兵, 邓建辉, 王俤剀, 等. 锦屏一级水电站地下厂房围岩变形与破坏特征分析[J]. 岩石力学与工程学报, 2010, 29(6): 1198-1205. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006016.htm

    WEI Jinbing, DENG Jianhui, WANG Dikai, et al. Characterization of deformation and fracture for rock mass in underground powerhouse of Jinping i hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1198-1205. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006016.htm
    [7]
    刘高, 张帆宇, 李新召, 等. 木寨岭隧道大变形特征及机理分析[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5521-5526. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2045.htm

    LIU Gao, ZHANG Fanyu, LI Xinzhao, et al. Research on large deformation and its mechanism of muzhailing tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5521-5526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2005S2045.htm
    [8]
    HOEK E, KAISER P K, BAWDEN W F. Support of Underground Excavations in Hard Rock[M]. Taylor and Francis: CRC Press, 2014.
    [9]
    江权, 冯夏庭, 李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用[J]. 岩石力学与工程学报, 2019, 38(6): 1081-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906002.htm

    JIANG Quan, FENG Xia-ting, LI Shaojun, et al. Cracking-restraint design method for large underground Caverns with hard rock under high geostress condition and its practical application[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081-1101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906002.htm
    [10]
    杨书浩, 王俊, 宁建国, 等. 动载扰动下深部大断面硐室围岩"帮-顶"联动失稳机理[J]. 煤炭科学技术, 2021, 49(10): 23-33. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202110004.htm

    YANG Shuhao, WANG Jun, NING Jianguo, et al. Mechanism of connected instability of "rib-roof" in deep large section chamber under dynamic disturbance[J]. Coal Science and Technology, 2021, 49(10): 23-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ202110004.htm
    [11]
    ZHAO, Y M, FENG, X T, JIANG, Q. et al. Large deformation control of deep roadways in fractured hard rock based on cracking-restraint method[J]. Rock Mechanics and Rock Engineering, 2021, 54: 2559-2580. doi: 10.1007/s00603-021-02384-4
    [12]
    ZHOU Z, CHEN Z, HE C, et al. Investigation on the evolution characteristics and transfer mechanism of surrounding rock pressure for a hard-rock tunnel under high geo-stress: case study on the Erlang Mountain Tunnel, China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 8339-8361. doi: 10.1007/s10064-021-02439-4
    [13]
    王智阳, 王浩杰, 张晓平. 大埋深高地应力硬岩TBM隧洞围岩破裂变形规律研究[J]. 工程地质学报, 2022, 30(5): 1678-1688. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202205028.htm

    WANG Zhiyang, WANG Haojie, ZHANG Xiaoping. Study on fracture deformation law of surrounding rock of TBM tunnel with large buried depth and high stress in hard rock[J]. Journal of Engineering Geology, 2022, 30(5): 1678-1688. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202205028.htm
    [14]
    沈才华, 童立元. 钢拱架柔性支撑稳定性预测判别方法探讨[J]. 土木工程学报, 2007, 40(3): 88-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200703016.htm

    SHEN Caihua, TONG Liyuan. Discussions on predicting the stability of flexible shotcrete and steel arch frame support for tunnels[J]. China Civil Engineering Journal, 2007, 40(3): 88-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200703016.htm
    [15]
    张恒, 陈寿根, 谭信荣, 等. 不同地层盾构隧道管片力学行为研究[J]. 地下空间与工程学报, 2015, 11(4): 845-851. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201504006.htm

    ZHANG Heng, CHEN Shougen, TAN Xinrong, et al. Research on mechanical behaviour of segmental structure of shield tunnel in different strata[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(4): 845-851. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201504006.htm
    [16]
    王利明, 李凤远, 张兵, 等. 全断面硬岩隧道掘进机隧洞钢拱架支护现场试验的力学性能及稳定性判断[J]. 科学技术与工程, 2020, 20(34): 14223-14228. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202034040.htm

    WANG Liming, LI Fengyuan, ZHANG Bing, et al. Mechanical property and stability of tunnel boring machine tunnel steel arch support field test[J]. Science Technology and Engineering, 2020, 20(34): 14223-14228. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202034040.htm
    [17]
    CAI M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries insight from numerical modeling[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 763-772.
    [18]
    DYSKIN A V, GERMANOVICH L N. Model of rockburst caused by cracks growing near free surface[C]// Rockbursts and Seismicity in Mines: Proceedings of the 3rd International Symposium, Kingston, Ontario, 1993: 169-174.
    [19]
    田红涛. 基于能量法的岩爆隧道支护体系及其计算模型研究[D]. 成都: 西南交通大学, 2021.

    TIAN Hongtao. Research on Support System in Rockburst Tunnel and the Calculation Model Based on Energy[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)

Catalog

    Article views (317) PDF downloads (98) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return