• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928
Citation: HOU Tianshun, ZHANG Jiancheng, SHU Bo. Model tests on earth pressure at rest of light weight soil behind rigid retaining walls[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(4): 764-773. DOI: 10.11779/CJGE20220928

Model tests on earth pressure at rest of light weight soil behind rigid retaining walls

More Information
  • Received Date: July 25, 2022
  • Available Online: November 28, 2023
  • To study the reduction mechanism of earth pressure on retaining wall for light weight soil, the model tests on a large-scale rigid retaining wall are conducted. The uniform loads are applied on the filling surface by heavy stacking. When the remolded loess and light weight soil are used as backfilling behind the wall, the distribution laws of earth pressure at rest are analyzed respectively. The results show that the earth pressure at rest of the light weight soil gradually increases with the increase of curing period, but the increase range gradually decreases. The earth pressures at rest of the remolded loess and the light weight soil increase approximately linearly with the increase of filling depth. Moreover, they gradually increase with the increase of the upper loads, and the increase range of earth pressure at rest for the remolded loess is obviously larger than that of the light weight soil. By comparing their earth pressures at rest, it is found that the light weight soil has an obvious pressure reduction effect, and the greater the uniform loads applied on the filling surface, the better the pressure reduction effects of the light weight soil. The coefficient of earth pressures at rest of the remolded loess and light weight soil is not constant. The range of coefficient of earth pressure at rest for the remolded loess is 0.34~0.78, and that of the light weight soil is 0.22~0.55. When the uniform loads are applied on the surface of the filling, the traditional earth pressure theory has a high applicability to calculate the earth pressure at rest of the remolded loess, but the calculation error of the light weight soil is larger. Based on the model tests and traditional earth pressure theory, a modified formula for the earth pressure at rest for the light weight soil is proposed. It is found that the relative error is mainly 1.01%~23.13%. The characteristics of earth pressure at rest of the light weight soil are revealed through the model tests and theoretical calculation, which is of great significance to improving the earth pressure theory of the light weight soil.
  • [1]
    王杰, 夏唐代, 贺鹏飞, 等. 考虑土拱效应的刚性挡墙主动土压力分析[J]. 岩土力学, 2014, 35(7): 1914-1920. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407016.htm

    WANG Jie, XIA Tangdai, HE Pengfei, et al. Analysis of active earth pressure on rigid retaining walls considering soil arching[J]. Rock and Soil Mechanics, 2014, 35(7): 1914-1920. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407016.htm
    [2]
    FEDERICO A, ELIA G, MURIANNI A. The at-rest earth pressure coefficient prediction using simple elasto-plastic constitutive models[J]. Computers and Geotechnics, 2009, 36(1/2): 187-198.
    [3]
    宋飞, 张建民, 刘超. 各向异性砂土K0试验研究[J]. 岩土力学, 2010, 31(12): 3727-3732, 3740. doi: 10.3969/j.issn.1000-7598.2010.12.006

    SONG Fei, ZHANG Jianmin, LIU Chao. Experimental study of K0 of anisotropic sand[J]. Rock and Soil Mechanics, 2010, 31(12): 3727-3732, 3740. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.12.006
    [4]
    LIRER S, FLORA A, NICOTERA M V. Some remarks on the coefficient of earth pressure at rest in compacted sandy gravel[J]. Acta Geotechnica, 2011, 6(1): 1-12. doi: 10.1007/s11440-010-0131-2
    [5]
    HAYASHI H, YAMAZOE N, MITACHI T, et al. Coefficient of earth pressure at rest for normally and overconsolidated peat ground in Hokkaido area[J]. Soils and Foundations, 2012, 52(2): 299-311. doi: 10.1016/j.sandf.2012.02.007
    [6]
    NORTHCUTT S, WIJEWICKREME D. Effect of particle fabric on the coefficient of lateral earth pressure observed during one-dimensional compression of sand[J]. Canadian Geotechnical Journal, 2013, 50(5): 457-466. doi: 10.1139/cgj-2012-0162
    [7]
    罗强, 蔡英, 邵启豪. 成都黏土重力式挡土墙的工程试验[J]. 西南交通大学学报, 1995, 30(3): 270-274. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199503005.htm

    LUO Qiang, CAI Ying, SHAO Qihao. Experimental study on gravity retaining wall filled with Chengdu clay[J]. Journal of Southwest Jiaotong University, 1995, 30(3): 270-274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT199503005.htm
    [8]
    AL ATIK L, SITAR N. Seismic earth pressures on cantilever retaining structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(10): 1324-1333. doi: 10.1061/(ASCE)GT.1943-5606.0000351
    [9]
    ZHANG M, WANG W, HU R H, et al. Study on model and tests of sheet pile wall with a relieving platform[J]. Advances in Civil Engineering, 2020, 2020: 1-16.
    [10]
    乔亚飞, 逯兴邦, 黄俊, 等. 欠固结地层静止侧压力简化计算方法[J]. 岩土力学, 2020, 41(11): 3722-3729. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011024.htm

    QIAO Yafei, LU Xingbang, HUANG Jun, et al. Simplified calculation method for lateral pressure at rest in the under-consolidation stratum[J]. Rock and Soil Mechanics, 2020, 41(11): 3722-3729. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011024.htm
    [11]
    侯天顺, 徐光黎. EPS粒径对轻量土抗剪强度的影响规律[J]. 岩土工程学报, 2011, 33(10): 1634-1641. http://cge.nhri.cn/cn/article/id/14214

    HOU Tianshun, XU Guangli. Influence law of EPS size on shear strength of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1634-1641. (in Chinese) http://cge.nhri.cn/cn/article/id/14214
    [12]
    侯天顺. 特征含水率对轻量土基本性质的影响规律[J]. 岩土力学, 2012, 33(9): 2581-2587. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209008.htm

    HOU Tianshun. Influence law of characteristic water content on basic properties of light weight soil[J]. Rock and Soil Mechanics, 2012, 33(9): 2581-2587. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209008.htm
    [13]
    侯天顺. 轻量土击实密度模型与工程特性[J]. 岩土工程学报, 2014, 36(11): 2127-2135. doi: 10.11779/CJGE201411020

    HOU Tianshun. Model for compaction density and engineering properties of light weight soil[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2127-2135. (in Chinese) doi: 10.11779/CJGE201411020
    [14]
    HOU T S. Prescription formula of foamed particles in lightweight soil[J]. Geotechnical and Geological Engineering, 2015, 33(1): 153-160. doi: 10.1007/s10706-014-9814-z
    [15]
    侯天顺, 徐光黎. 发泡颗粒混合轻量土三轴应力-应变-孔压特性试验[J]. 中国公路学报, 2009, 22(6): 10-17. doi: 10.3321/j.issn:1001-7372.2009.06.002

    HOU Tianshun, XU Guangli. Experiment on triaxial pore water pressure-stress-strain characteristics of foamed particle light weight soil[J]. China Journal of Highway and Transport, 2009, 22(6): 10-17. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.06.002
    [16]
    顾欢达, 顾熙. 塑料发泡颗粒轻质填土的土压力计算[J]. 四川建筑科学研究, 2008, 34(5): 93-98. doi: 10.3969/j.issn.1008-1933.2008.05.026

    GU Huanda, GU Xi. The calculation of earth pressure of foamed beads light soil by slice method[J]. Sichuan Building Science, 2008, 34(5): 93-98. (in Chinese) doi: 10.3969/j.issn.1008-1933.2008.05.026
    [17]
    CHENARI R J, FARD M K, MAGHFARATI S P, et al. An investigation on the geotechnical properties of sand-EPS mixture using large oedometer apparatus[J]. Construction and Building Materials, 2016, 113: 773-782. doi: 10.1016/j.conbuildmat.2016.03.083
    [18]
    王超, 高洪梅, 王志华, 等. EPS混合土处理桥台软土地基模型试验[J]. 南京工业大学学报(自然科学版), 2017, 39(6): 118-123. doi: 10.3969/j.issn.1671-7627.2017.06.018

    WANG Chao, GAO Hongmei, WANG Zhihua, et al. Model test of abutment on soft soil retaining EPS composite soil[J]. Journal of Nanjing Tech University (Natural Science Edition), 2017, 39(6): 118-123. (in Chinese) doi: 10.3969/j.issn.1671-7627.2017.06.018
    [19]
    李明东, 朱伟, 马殿光, 等. EPS颗粒混合轻质土的施工技术及其应用实例[J]. 岩土工程学报, 2006, 28(4): 533-536. doi: 10.3321/j.issn:1000-4548.2006.04.021

    LI Mingdong, ZHU Wei, MA Dianguang, et al. Construction technology and application in situ of expanded polystyrene treated lightweight soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 533-536. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.04.021
    [20]
    梁波, 厉彦君, 凌学鹏, 等. 离心模型试验中微型土压力盒土压力测定[J]. 岩土力学, 2019, 40(2): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902047.htm

    LIANG Bo, LI Yanjun, LING Xuepeng, et al. Determination of earth pressure by miniature earth pressure cell in centrifugal model test[J]. Rock and Soil Mechanics, 2019, 40(2): 818-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902047.htm
    [21]
    HAMDERI M. Finite element-based coefficient of lateral earth pressure for cohesionless soil[J]. International Journal of Geomechanics, 2021, 21(5): 1-12.
    [22]
    侯天顺, 杨凯旋. 挡土墙后EPS颗粒混合轻量土填料静止土压力特性模型试验研究[J]. 岩土力学, 2021, 42(12): 3249-3259, 3270. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112005.htm

    HOU Tianshun, YANG Kaixuan. Model test on earth pressure at rest of light weight soil mixed with EPS particles behind a retaining wall[J]. Rock and Soil Mechanics, 2021, 42(12): 3249-3259, 3270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202112005.htm
    [23]
    侯天顺, 郭鹏斐, 杨凯旋, 等. 发泡颗粒混合轻量土静止土压力特性及计算方法研究[J]. 岩土工程学报, 2022, 44(12): 2234-2244. doi: 10.11779/CJGE202212010

    HOU Tianshun, GUO Pengfei, YANG Kaixuan, et al. Characteristics and method for calculating earth pressure at rest of light weight soil with foamed particles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2234-2244. (in Chinese) doi: 10.11779/CJGE202212010
  • Related Articles

    [1]ZHAN Zheng-gang, ZHANG He-zuo, CHENG Rui-lin, QIU Huan-feng. Application of methods for life-cycle deformation control of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1141-1147. DOI: 10.11779/CJGE202206019
    [2]LI Lin, LI Jing-pei, SUN De-an, ZHANG Ling-xiang. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
    [3]LIU Xin, GAN Liang-qin, SHENG Ke, HONG Bao-ning. Experimental study on service life of foamed mixture lightweight soil based on method of accelerated stress tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1793-1799. DOI: 10.11779/CJGE201710006
    [4]HU Bin, WANG Xin-gang, FENG Xiao-la, HU Qi-chen, WANG Wei. Analytical prediction and numerical simulation of effect of a deep excavation project of wuhan metro on nearby viaduct[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 368-373. DOI: 10.11779/CJGE2014S2064
    [5]DENG Dong-ping, LI Liang, ZHAO Lian-heng, LIU Jian-hao. Prediction of service life of pre-stressed anchorage bolt (cable) due to corrosion expansion[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1464-1472. DOI: 10.11779/CJGE201408012
    [6]Martin Wieland, R.Peter Brenner. Life-span of concrete and embankment dams and economic benefits of dam safety projects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1692-1698.
    [7]HAN Xuan, LI Ning. A predicting model for ground movement induced by non-uniform convergence of tunnel[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 347-352.
    [8]REN Jianxi, JIANG Yu, GE Xiurun. Test and analysis on rock fatigue life due to affecting factors under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 47-50.
    [9]Settlement prediction methods considering creep[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 416-418.
    [10]Zhang Zhenying, Wu Shiming, Chen Yunmin. Experimental research on the parameter of life rubbish in city[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 38-42.
  • Cited by

    Periodical cited type(11)

    1. 吕宏强,唐天成,包晨宇. 基于光滑粒子流体动力学法的流固共轭自然对流传热数值模拟. 航空学报. 2025(05): 180-196 .
    2. 付永帅. 基于机器视觉的水利枢纽工程生态脆弱区地基渗流仿真分析. 水利规划与设计. 2024(01): 89-93+102 .
    3. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    4. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    5. 黄帅,刘传正,GODA Katsuichiro. 光滑粒子流体动力学方法在饱和边坡地震滑移大变形中的适用性研究. 岩土工程学报. 2023(02): 336-344+443 . 本站查看
    6. 桂滨,林岩松,关彦斌. 高压浆液挤压饱和土体变形模拟的SPH方法. 公路交通科技. 2023(03): 51-57 .
    7. 王占彬,张卫杰,张健,代登辉,高玉峰. 基于并行SPH方法的地震滑坡对桥桩的冲击作用. 湖南大学学报(自然科学版). 2022(07): 54-65 .
    8. 张卫杰,余瑞华,陈宇,高玉峰,黄雨. 强度指标影响下滑坡运动特征及参数反分析. 岩土工程学报. 2022(12): 2304-2311 . 本站查看
    9. 戴轩,郑刚,程雪松,霍海峰. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟. 岩石力学与工程学报. 2019(02): 396-408 .
    10. 杜彬,邱兆勇. 防渗墙技术在堤坝施工中的应用. 水利科学与寒区工程. 2019(02): 123-125 .
    11. 张卫杰,郑虎,王占彬,高玉峰. 基于三维并行SPH模型的土体流滑特性研究. 工程地质学报. 2018(05): 1279-1284 .

    Other cited types(6)

Catalog

    Article views (429) PDF downloads (144) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return