• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012
Citation: TIAN Jia-li, WANG Hui-min, LIU Xing-xing, XIANG Lei, SHENG JIN-chang, LUO Yu-long, ZHAN Mei-li. Permeability characteristics of sandstone based on NMR-coupled real-time seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1671-1678. DOI: 10.11779/CJGE202209012

Permeability characteristics of sandstone based on NMR-coupled real-time seepage

More Information
  • Received Date: September 01, 2021
  • Available Online: September 22, 2022
  • Aiming at the problem that the traditional macro-relationship between porosity and permeability is difficult to accurately predict the permeability characteristics of reservoir sandstone, the nuclear magnetic resonance-coupled real-time seepage system is used to explain the variation of micro-pore-structure for sandstones in the process of penetration. The effects of the multi-scale pore compression coefficient on the permeability characteristics are quantitatively analyzed. Then, a formula for calculating the permeability of sandstone considering the pore compression sensitivity at multiple scales is proposed. The results show that: (1) The deformation mechanism of multi-scale pores is different under different stress conditions. The increase of the confining pressure leads to the obvious closure of large pores, while the increase of osmosis pressure promotes the development and expansion of small pores. (2) The proposed method for the permeability considering pore compression sensitivity at multiple scales has a good consistency with the experimental results.
  • [1]
    王如宾, 徐卫亚, 王伟, 等. 坝基硬岩蠕变特性试验及其蠕变全过程中的渗流规律[J]. 岩石力学与工程学报, 2010, 29(5): 960–969. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005015.htm

    WANG Ru-bin, XU Wei-ya, WANG Wei, et al. Experimental investigation on creep behaviors of hard rock in dam foundation and its seepage laws during complete process of rock creep[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 960–969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005015.htm
    [2]
    EMMANUEL S, ANOVITZ L M, DAY-STIRRAT R J. Effects of coupled chemo-mechanical processes on the evolution of pore-size distributions in geological media[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 45–60. doi: 10.2138/rmg.2015.03
    [3]
    张俊文, 宋治祥, 范文兵, 等. 应力–渗流耦合下砂岩力学行为与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(7): 1364–1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907007.htm

    ZHANG Jun-wen, SONG Zhi-xiang, FAN Wen-bing, et al. Experimental study on mechanical behavior and permeability characteristics of sandstone under stress-seepage coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1364–1372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907007.htm
    [4]
    王彪, 赵瑞, 李云松, 等. 不同围压作用下川西高原地区岩石渗透率变化特性试验研究: 以巴郎山隧道为例[J]. 安全与环境工程, 2021, 28(3): 179–186. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202103024.htm

    WANG Biao, ZHAO Rui, LI Yun-song, et al. Experimental study on variation characteristics of rock permeability under different confining pressures in western Sichuan plateau—taking balang mountain tunnel as an example[J]. Safety and Environmental Engineering, 2021, 28(3): 179–186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202103024.htm
    [5]
    MA J, QUERCI L, HATTENDORF B, et al. The effect of mineral dissolution on the effective stress law for permeability in a tight sandstone[J]. Geophysical Research Letters, 2020, 47(15): 1–9. doi: 10.1029/2020GL088346
    [6]
    李克钢, 杨宝威, 秦庆词. 基于核磁共振技术的白云岩卸荷损伤与渗透特性试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3493–3502. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2024.htm

    LI Ke-gang, YANG Bao-wei, QIN Qing-ci. Experimental study on unloading damage and permeability of dolomite based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3493–3502. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2024.htm
    [7]
    CIVAN F. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 2010, 82(2): 375–384. doi: 10.1007/s11242-009-9432-z
    [8]
    肖忠祥, 肖亮. 基于核磁共振测井和毛管压力的储层渗透率计算方法[J]. 原子能科学技术, 2008, 42(10): 868–871. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200810003.htm

    XIAO Zhong-xiang, XIAO Liang. Method to calculate reservoir permeability using nuclear magnetic resonance logging and capillary pressure data[J]. Atomic Energy Science and Technology, 2008, 42(10): 868–871. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS200810003.htm
    [9]
    CHI L, HEIDARI Z. Directional-permeability assessment in formations with complex pore geometry with a new nuclear-magnetic-resonance-based permeability model[J]. SPE Journal, 2016, 21(4): 1436–1449. doi: 10.2118/179734-PA
    [10]
    肖亮, 刘晓鹏, 毛志强. 结合NMR和毛管压力资料计算储层渗透率的方法[J]. 石油学报, 2009, 30(1): 100–103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901021.htm

    XIAO Liang, LIU Xiao-peng, MAO Zhi-qiang. A computation method for reservoir permeability by combining NMR log and capillary pressure data[J]. Acta Petrolei Sinica, 2009, 30(1): 100–103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200901021.htm
    [11]
    葛新民, 范宜仁, 邓少贵. 基于实验分析的泥质砂岩T2截止值确定方法研究[J]. 测井技术, 2011, 35(4): 308–313. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104005.htm

    GE Xin-min, FAN Yi-ren, DENG Shao-gui. Research on T2 cutoff-value determination method for shaly sand based on experiments[J]. Well Logging Technology, 2011, 35(4): 308–313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201104005.htm
    [12]
    姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1): 181–189. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801023.htm

    YAO Yan-bin, LIU Da-meng. Petrophysical properties and fluids transportation in gas shale: a NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181–189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201801023.htm
    [13]
    范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4): 1628–1638. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804036.htm

    FAN Yi-ren, LIU Jian-yu, GE Xin-min, et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR[J]. Chinese Journal of Geophysics, 2018, 61(4): 1628–1638. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201804036.htm
    [14]
    周尚文, 薛华庆, 郭伟, 等. 川南龙马溪组页岩核磁渗透率新模型研究[J]. 中国石油大学学报(自然科学版), 2016, 40(1): 56–61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601008.htm

    ZHOU Shang-wen, XUE Hua-qing, GUO Wei, et al. A new nuclear magnetic resonance permeability model of shale of Longmaxi Formation in southern Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(1): 56–61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201601008.htm
    [15]
    AGHDA S M F, TASLIMI M, FAHIMIFAR A. Adjusting porosity and permeability estimation by nuclear magnetic resonance: a case study from a carbonate reservoir of south of Iran[J]. Journal of Petroleum Exploration and Production Technology, 2018, 8(4): 1113–1127. doi: 10.1007/s13202-018-0474-z
    [16]
    ALGHAMDI T M, ARNS C H H, EYVAZZADEH R Y Y. Correlations between NMR-relaxation response and relative permeability from tomographic reservoir-rock images[J]. SPE Reservoir Evaluation & Engineering, 2013, 16(4): 369–377.
    [17]
    MAO Z Q, XIAO L, WANG Z N, et al. Estimation of permeability by integrating nuclear magnetic resonance (NMR) logs with mercury injection capillary pressure (MICP) data in tight gas sands[J]. Applied Magnetic Resonance, 2013, 44(4): 449–468. doi: 10.1007/s00723-012-0384-z
    [18]
    韩玉娇, 周灿灿, 范宜仁, 等. 基于孔径组分的核磁共振测井渗透率计算新方法: 以中东A油田生物碎屑灰岩储集层为例[J]. 石油勘探与开发, 2018, 45(1): 170–178. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801021.htm

    HAN Yu-jiao, ZHOU Can-can, FAN Yi-ren, et al. A new permeability calculation method using nuclear magnetic resonance logging based on pore sizes: a case study of bioclastic limestone reservoirs in the A oilfield of the Mid-East[J]. Petroleum Exploration and Development, 2018, 45(1): 170–178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801021.htm
    [19]
    XU H J, LI C X, FAN Y R, et al. A new permeability predictive model based on NMR data for sandstone reservoirs[J]. Arabian Journal of Geosciences, 2020, 13(20): 1–10. doi: 10.1007/s12517-020-06055-6
    [20]
    MU Y, HU Z M, CHANG J, et al. Effect of water occurrence on shale seepage ability[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108725. doi: 10.1016/j.petrol.2021.108725
    [21]
    CHEN Y, LIU D M, CAI Y D, et al. Insights into fractal characteristics of pores in different rank coals by nuclear magnetic resonance (NMR)[J]. Arabian Journal of Geosciences, 2018, 11(19): 1–12. http://www.onacademic.com/detail/journal_1000040863343510_5780.html
    [22]
    SHI J Q Q, DURUCAN S. Exponential growth in San Juan Basin fruitland coalbed permeability with reservoir drawdown: model match and new insights[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(6): 914–925.
    [23]
    LI S, TANG D Z, PAN Z J, et al. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance[J]. Fuel, 2013, 111: 746–754. doi: 10.1016/j.fuel.2013.05.003
    [24]
    ZHANG P F, LU S F, LI J Q, et al. Characterization of shale pore system: a case study of Paleogene Xin'gouzui Formation in the Jianghan Basin, China[J]. Marine and Petroleum Geology, 2017, 79: 321–334. doi: 10.1016/j.marpetgeo.2016.10.014
    [25]
    闫建平, 温丹妮, 李尊芝, 等. 基于核磁共振测井的低渗透砂岩孔隙结构定量评价方法: 以东营凹陷南斜坡沙四段为例[J]. 地球物理学报, 2016, 59(4): 1543–1552. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604034.htm

    YAN Jian-ping, WEN Dan-ni, LI Zun-zhi, et al. The quantitative evaluation method of low permeable sandstone pore structure based on nuclear magnetic resonance(NMR) logging[J]. Chinese Journal of Geophysics, 2016, 59(4): 1543–1552. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201604034.htm
  • Related Articles

    [1]YANG Xu, CAI Guoqing, LIU Qianqian, LI Fengzeng, SHAN Yepeng. Experimental study on influences of wetting-drying cycles on microstructure and water-retention characteristics of clay[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S2): 11-15. DOI: 10.11779/CJGE2024S20006
    [2]HUANG Chun-xia, HUANG Min, CAI Wei, CHEN Guo-xing, LIU Chang, ZHANG Yan-mei. Microstructure of silt with different clay contents[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 758-764. DOI: 10.11779/CJGE202004020
    [3]JIANG Ming-jing, LI Zhi-yuan, HUANG He-peng, LIU Jun. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 17-20. DOI: 10.11779/CJGE2017S2005
    [4]ZHOU Qiao-yong, XIONG Bao-lin, YANG Guang-qing, LIU Wei-chao. Microstructure of low liquid limit silt[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 439-444.
    [5]CHEN Yu-long. Microstructure of expansive soil from Yunnan Province[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 334-339.
    [6]Microstructural change of soft clay before and after one-dimensional compression creep[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1688-1694.
    [7]TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4): 560-565.
    [8]ZHOU Cuiying, MU Chunmei. Analysis on effective radius of gravel piles reinforcement in soft soil foundations based on microstructure[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(7): 755-758.
    [9]WANG Baojun, SHI Bin, LIU Zhibin, CAI Yi. Fractal study on microstructure of clayey soil by GIS[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 244-247.
    [10]Shi Bin. Quantitative  Assessment  of  Changes  of  Microstructure  for  Clayey  Soil  in  the  Process  of  Compaction[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(4): 60-65.
  • Cited by

    Periodical cited type(13)

    1. 满轲,柳宗旭,商艳,宋志飞,刘晓丽,苏宝. 基于灰色关联分析下深度学习盾构姿态预测模型. 工程科学与技术. 2025(02): 203-213 .
    2. 满轲,曹子祥,刘晓丽,宋志飞,柳宗旭,刘汭琳,武立文. 地质突变条件下基于组合模型的围岩等级和TBM掘进参数预测. 河海大学学报(自然科学版). 2024(01): 55-62 .
    3. 邓志兴,谢康,李泰灃,苏谦,韩征,肖宪普. 基于机器学习的高铁边坡位移预测不确定性度量与应用. 中国铁道科学. 2024(01): 56-67 .
    4. 姜浩,郑亚强,金治军,马庆,董强,郑德焰,林峰,赵炳武. 基于ANN算法的钢结构安装工程质量状态评价. 化工管理. 2024(06): 102-109 .
    5. 郝晶晶,段鹏鑫,陈雨欣,段晓晨. 基于IGWO-SVR的地铁车站投资预测. 铁道学报. 2024(05): 179-188 .
    6. 张洁. 新疆超长隧洞TBM智能掘进施工方法研究. 黑龙江水利科技. 2024(08): 123-125 .
    7. 林平,李有鹏,谭彬. 基于Bootstrap方法和LSSVM模型的滑坡位移区间预测. 测绘与空间地理信息. 2024(09): 48-51+56 .
    8. 张琦,甘超,曹卫华. 大洋钻探过程钻速在线区间预测方法——以微型钻探船室内模拟实验为例. 钻探工程. 2024(05): 45-52 .
    9. 赵高峰,姜宝元,芮福鑫,马洪素,李洁勇,赵晓豹,龚秋明. 基于数值仿真的复杂岩体TBM掘进性能评估模型. 中南大学学报(自然科学版). 2023(03): 984-997 .
    10. 常建涛,乔子萱,孔宪光,杨胜康,罗才文. 多维非线性特征重构与融合的复杂产品工期预测方法. 机械工程学报. 2023(06): 294-308 .
    11. 禹海涛,朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析. 隧道与地下工程灾害防治. 2023(03): 19-26 .
    12. 彭继慎,郝茗,宋立业,李希桐. 基于TSSA-SVR算法的TBM掘进速度预测. 辽宁工程技术大学学报(自然科学版). 2023(05): 634-640 .
    13. 闫静,张雪英,李凤莲,陈桂军,黄丽霞. 结合栈式监督AE与可变加权ELM的回归预测模型. 计算机工程. 2022(08): 62-69+76 .

    Other cited types(11)

Catalog

    Article views (169) PDF downloads (37) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return