Citation: | ZHANG Zhao, ZHU Liangyu, LI Guangyao, YUAN Haoyu, GAO Shuaidong, HAN Huaqiang, LIU Fengyin, QI Jilin. Analytical model for preferential infiltration into cracks in soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1831-1840. DOI: 10.11779/CJGE20220856 |
[1] |
RECK A, JACKISCH C, HOHENBRINK T L, et al. Impact of temporal macropore dynamics on infiltration: field experiments and model simulations[J]. Vadose Zone Journal, 2018, 17(1): 1-15.
|
[2] |
唐朝生. 极端气候工程地质: 干旱灾害及对策研究进展[J]. 科学通报, 2020, 65(27): 3008-3027. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm
TANG Chao-sheng. Extreme climate engineering geology: soil engineering properties response to drought climate and measures for disaster mitigation[J]. Chinese Science Bulletin, 2020, 65(27): 3008-3027. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202027011.htm
|
[3] |
LI J H, LI L, CHEN R, et al. Cracking and vertical preferential flow through landfill clay liners[J]. Engineering Geology, 2016, 206(3): 33-41.
|
[4] |
JARVIS N J. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality[J]. European Journal of Soil Science, 2007, 58(3): 523-546. doi: 10.1111/j.1365-2389.2007.00915.x
|
[5] |
GERKE H H, VAN GENUCHTEN M T. A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media[J]. Water Resources Research, 1993, 29(2): 305-319. doi: 10.1029/92WR02339
|
[6] |
HEPPELL C M, WORRALL F, BURT T P, et al. A classification of drainage and macropore flow in an agricultural catchment[J]. Hydrology Processes, 2002, 16(1): 27-46. doi: 10.1002/hyp.282
|
[7] |
GRAHAM C B, LIN H S. Controls and frequency of preferential flow occurrence: a 175-event analysis[J]. Vadose Zone Journal, 2011, 10(3): 816-831. doi: 10.2136/vzj2010.0119
|
[8] |
AKAY O, FOX G A. Experimental investigation of direct connectivity between macropores and subsurface drains during infiltration[J]. Soil Science Society of America Journal, 2007, 71(5): 1600-1606. doi: 10.2136/sssaj2006.0359
|
[9] |
王全九, 来剑斌, 李毅. Green-Ampt模型与Philip入渗模型的对比分析[J]. 农业工程学报, 2002, 18(2): 13-16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200202003.htm
WANG Quanjiu, LAI Jianbin, LI Yi. Comparison of Green-Ampt model with Philip infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU200202003.htm
|
[10] |
CRAIG J R, LIU G, and SOULIS E D. Runoff-infiltration partitioning using an upscaled Green-Ampt solution[J]. Hydrology Processes, 2010, 24(16): 2328–2334. doi: 10.1002/hyp.7601
|
[11] |
RINGROSE-VOASE A J, SANIDAD W B. A method for measuring the development of surface cracks in soils: application to crack development after lowland rice[J]. Geoderma, 1996, 71(3/4): 245-261.
|
[12] |
STEWART RYAN D, ABOU N M R. Field measurements of soil cracks[J]. Soil Science Society of America Journal, 2020, 84(5): 1462-1476. doi: 10.1002/saj2.20155
|
[13] |
张家铭, 罗易, 周峙, 等. 基于足尺模型试验的边坡裂隙发展演化规律[J]. 中南大学学报(自然科学版), 2020, 51(4): 1037-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202004018.htm
ZHANG Jiaming, LUO Yi, ZHOU Zhi, et al. Evolution law of cracks based on full-scale model test of slope[J]. Journal of Central South University (Science and Technology), 2020, 51(4): 1037-1048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202004018.htm
|
[14] |
罗易, 张家铭, 周峙, 等. 降雨-蒸发条件下土体开裂临界含水率演变规律研究[J]. 岩土力学, 2020, 41(8): 2592-2600. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008010.htm
LUO Yi, ZHANG Jiaming, ZHOU Zhi, et al. Evolution law of critical moisture content of soil cracking under rainfall-evaporation conditions[J]. Rock and Soil Mechanics, 2020, 41(8): 2592-2600. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008010.htm
|
[15] |
SELKER J, ASSOULINE S. An explicit, parsimonious, and accurate estimate for ponded infiltration into soils using the Green and Ampt approach[J]. Water Resources Research, 2017, 53(8): 7481-7487.
|
[16] |
STEWART R D. A dynamic multi-domain Green-Ampt infiltration model[J]. Water Resources Research, 2018, 54(9): 6844-6859.
|
[17] |
FOK Y S. A comparison of the Green-Ampt and Philip two-term infiltration equations[J]. Transactions of the ASAE, 1975, 18(6): 1073-1075.
|
[18] |
MOREL-SEYTOUX H J, MEYER P D, NACHABE M, et al. Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics: preserving the effective capillary drive[J]. Water Resources Research, 1996, 32(5): 1251-1258.
|
[19] |
ŠIMŮNEK J, VAN GENUCHTEN M T, ŠEJNA M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media[R]. Riverside: University of California, 2005.
|
[20] |
GERMANN P F. Viscosity: the weak link between Darcy's law and Richards' capillary flow[J]. Hydrology Processes 2018, 32(9): 1166-1172.
|
[21] |
JARVIS N, JANSSON P E, DIK P, et al. Modelling water and solute transport in macroporous soil: I model description and sensitivity analysis[J]. European Journal of Soil Science, 1991, 42(1): 59-70.
|
[22] |
NIMMO J R. Theory for source-responsive and free-surface film modeling of unsaturated flow[J]. Vadose Zone Journal, 2010, 9(2): 295-306.
|
[23] |
VOGEL H J, COUSIN I, IPPISCH O, et al. The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment[J]. Hydrology and Earth System Sciences, 2006, 10(4): 495-506.
|
[24] |
LI J H, ZHANG L M, LI X. Soil-water characteristic curve and permeability function for unsaturated cracked soil[J]. Canadian Geotechnical Journal, 2011, 48(7): 1010-1031.
|
[25] |
ASSOULINE S, SELKER J S, PARLANGE J Y. A simple accurate method to predict time of ponding under variable intensity rainfall[J]. Water Resources Research, 2007, 43(3): 3426.
|
[26] |
LASSABATERE L, YILMAZ D, PEYRARD X, et al. New analytical model for cumulative infiltration into dual-permeability soils[J]. Vadose Zone Journal, 2014, 13(12): 1-15.
|
[27] |
GERKE H H, VAN GENUCHTEN M T. Evaluation of a first-order water transfer term for variably saturated dual-porosity flow models[J]. Water Resources Research, 1993, 29(4): 1225-1238.
|
[28] |
WEILER M. An infiltration model based on flow variability in macropores: development, sensitivity analysis and applications[J]. Journal of Hydrology, 2005, 310(1/2/3/4): 294-315.
|