• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838
Citation: ZHOU Jian, JIANG Yicheng, ZHU Zeming, GAN Qiyun. Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1995-2003. DOI: 10.11779/CJGE20220838

Theoretical and experimental studies on interfacial resistance of electro-osmotic consolidation for soft ground improvement

More Information
  • Received Date: July 04, 2022
  • Available Online: March 05, 2023
  • The electro-osmosis has been applied experimentally in the fields of ground improvement, silt dredging and heavy metal pollution remediation. However, the potential loss at the clay-electrode interface during electro-osmosis consolidation is high, resulting in high energy consumption. In this study, the reaction process at the clay-electrode interface is analyzed from an electrochemical perspective to explain the mechanism of interfacial resistance. Based on the interfacial resistance model, the indoor electro-osmotic tests are carried out using metallic electrodes (copper) and electrodes of electro-kinetic geosynthetic to study the changes in the interface resistance under long-term energization. The results show that the interfacial resistance model can be used to analyze the mechanism of interfacial resistance change under long-term electroosmotic conditions. The total interfacial resistance is influenced by the cathodic interfacial resistance at the early stage of energization, and at the later stage of electroosmosis, it is more influenced by the anode resistance. The interfacial resistance is an important influence on the efficiency of electro-osmotic drainage. Therefore, it should be monitored and used as a control index for electro-osmotic design in the project.
  • [1]
    文海家, 严春风, 汪东云. 吹填软土的工程特性研究[J]. 重庆建筑大学学报, 1999, 21(2): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN902.016.htm

    WEN Haijia, YAN Chunfeng, WANG Dongyun. Some engineering properties of the dredger fill[J]. Journal of Chongqing Jianzhu University, 1999, 21(2): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN902.016.htm
    [2]
    YEUNG A T, GU Y Y. A review on techniques to enhance electrochemical remediation of contaminated soils[J]. Journal of Hazardous Materials, 2011, 195: 11-29. doi: 10.1016/j.jhazmat.2011.08.047
    [3]
    MOHAMEDELHASSAN E, SHANG J Q. Effects of electrode materials and current intermittence in electro-osmosis[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2001, 5(1): 3-11. doi: 10.1680/grim.2001.5.1.3
    [4]
    BJERRUM L, MOUM J, EIDE O. Application of electro-osmosis to a foundation problem in a Norwegian quick clay[J]. Géotechnique, 1967, 17(3): 214-235. doi: 10.1680/geot.1967.17.3.214
    [5]
    CASAGRANDE L. Stabilization of soils by means of electro-osmosis: state of the art[J]. Journal of the Boston Society of Civil Engineers, 1983, 69(2): 255-302.
    [6]
    ZHUANG Y F, WANG Z. Interface electric resistance of electroosmotic consolidation[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineers, 2007, 133(12): 1617-1621. doi: 10.1061/(ASCE)1090-0241(2007)133:12(1617)
    [7]
    谢新宇, 李卓明, 郑凌逶, 等. 电渗固结中接触电阻影响因素的试验研究[J]. 中南大学学报(自然科学版), 2018, 49(3): 655-662. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803019.htm

    XIE Xinyu, LI Zhuoming, ZHENG Lingwei, et al. Experimental study on influencing factors of contact resistance on electroosmotic consolidation[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 655-662. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201803019.htm
    [8]
    郭康仕. 电渗电极与接触电阻特性及模型参数特性研究[D]. 武汉: 武汉大学, 2018.

    GUO Kangshi. Study on Characteristics of Electro-Osmosis Electrode and Contact Resistance and Model Parameters[D]. Wuhan: Wuhan University, 2018. (in Chinese)
    [9]
    GAN Q, ZHOU J, TAO Y, et al. Interfacial resistance model for electro-osmotic system[J]. Géotechnique, 2022: 1-64.
    [10]
    HAMANN C H, HAMNETT A, VIELSTICH W. Elec-trochemistry[M]. Weinheim: Wiley-VCH, 2007.
    [11]
    高鹏, 朱永明, 于元春. 电化学基础教程[M]. 2版. 北京: 化学工业出版社, 2019.

    GAO Peng, ZHU Yongming, YU Yuanchun. Basic Electrochemistry Materials[M]. 2nd ed. Beijing: Chemical Industry Press Co., Ltd, 2019. (in Chinese)
    [12]
    GLENDINNING S, LAMONT-BLACK J, JONES C J F P. Treatment of sewage sludge using electrokinetic geosynthetics[J]. Journal of Hazardous Materials, 2007, 139(3): 491-499. doi: 10.1016/j.jhazmat.2006.02.046
    [13]
    BERGADO D T, BALASUBRAMANIAM A S, PATAWARAN M A B, et al. Electro-osmotic consolidation of soft Bangkok clay with prefabricated vertical drains[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2000, 4(4): 153-163. doi: 10.1680/grim.2000.4.4.153
    [14]
    查全性. 金属钝化理论的进展[J]. 化学通报, 1963, 26(11): 15-19, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB196311002.htm

    ZHA Quanxing. Progress in metal passivation theory[J]. Chemistry, 1963, 26(11): 15-19, 5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB196311002.htm
    [15]
    SCOTT K. Electrochemical Processes for Clean Technology[M]. Cambridge: Royal Society of Chemistry, 1995.
    [16]
    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.
    [17]
    TANG X W, LI Z Z, CHEN Y M, et al. Removal of Cu(Ⅱ) from aqueous solution by adsorption on Chinese Quaternary loess: Kinetics and equilibrium studies[J]. Journal of Environmental Science and Health, Part A, 2008, 43(7): 779-791. doi: 10.1080/10934520801960144
    [18]
    李振泽. 土对重金属离子的吸附解吸特性及其迁移修复机制研究[D]. 杭州: 浙江大学, 2009.

    LI Zhenze. Mechanism of Sorption, Desorption, Diffusion and Remediation of Heavy Metals in Soils[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)
    [19]
    查甫生, 刘松玉, 杜延军, 等. 非饱和黏性土的电阻率特性及其试验研究[J]. 岩土力学, 2007, 28(8): 1671-1676. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200708025.htm

    ZHA Fusheng, LIU Songyu, DU Yanjun, et al. The electrical resistivity characteristics of unsaturated clayey soil[J]. Rock and Soil Mechanics, 2007, 28(8): 1671-1676. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200708025.htm
    [20]
    YEUNG A T, HSU C N, MENON R M. Electrokinetic extraction of lead from kaolinites: Ⅰ numerical modeling[J]. The Environmentalist, 2011, 31(1): 26-32. doi: 10.1007/s10669-010-9295-4
    [21]
    SHANG J Q. Zeta potential and electroosmotic permeability of clay soils[J]. Canadian Geotechnical Journal, 1997, 34(4): 627-631. doi: 10.1139/t97-28
    [22]
    MATTSON E D, BOWMAN R S, LINDGREN E R. Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing[J]. Journal of Contaminant Hydrology, 2002, 54(1/2): 99-120.
    [23]
    ZHOU J, GAN Q, TAO Y. Electro-osmotic permeability model based on ions migration[J]. Acta Geotechnica, 2022, 17(6): 2379-2393.
  • Cited by

    Periodical cited type(15)

    1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
    2. 胡静,金林廉,吕志豪,张家康,边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应. 岩土工程学报. 2025(02): 397-406 . 本站查看
    3. 周葆春,江星澐,马全国,单丽霞,王江伟,李颖,易先达,孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟. 岩土工程学报. 2025(04): 695-704 . 本站查看
    4. 李佳文,陈高明,田世龙,韩博文,冯怀平,杨志浩. 土体含水率对振动压实的影响及电阻率演化特征研究. 振动与冲击. 2025(07): 16-25 .
    5. 吴炎,胡坤,姜马欢,李荟楠,彭哲. 两种气体作用下非饱和江边吹填砂三轴试验研究. 人民长江. 2024(02): 211-215+230 .
    6. 赵中航,林昱利,郭浩天,刘全想,任淇淇. 温度及饱和度对粉质黏土变形特性的影响. 低温建筑技术. 2024(02): 119-123 .
    7. 赵习武. 土工格室在库岸非饱和土边坡稳定性治理中的应用. 水利技术监督. 2024(06): 276-278+282 .
    8. 张莹,刘忠,谢文博. 非饱和土地基的承载比试验分析. 工程与建设. 2024(02): 417-419 .
    9. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    10. 朱振慧,赵连军,张防修,黄李冰. 基于黏粒含量的黄河下游堤防土水特征曲线预测研究. 人民黄河. 2024(10): 55-61 .
    11. 陈可,王琛,梁发云,汪中卫. 考虑水力滞后与变形耦合的非饱和土持水曲线模型. 岩土力学. 2024(12): 3694-3704+3716 .
    12. 李纯,王煜斌,王刚. 层状土体变特性及变形计算方法研究进展. 水利与建筑工程学报. 2023(04): 1-9 .
    13. 权国绍,刘鹏. 强降雨条件下高填路段路基滑坡稳定性数值优化分析. 粘接. 2023(11): 165-168 .
    14. 周子宜. 鸡姆塘水库大坝除险加固渗流与坝坡稳定分析. 水利科学与寒区工程. 2023(11): 33-36 .
    15. 上官云龙,李东鑫,王罡. 冻融循环对膨胀土力学特性的影响及本构描述. 吉林建筑大学学报. 2023(06): 33-38 .

    Other cited types(11)

Catalog

    Article views (457) PDF downloads (148) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return