• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GU Xin, ZHANG Wengang, OU Qiang, WANG Lin, QIN Changbing. Reliability analysis of soil slope stability based on Chebyshev-Galerkin-KL expansion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2472-2480. DOI: 10.11779/CJGE20220831
Citation: GU Xin, ZHANG Wengang, OU Qiang, WANG Lin, QIN Changbing. Reliability analysis of soil slope stability based on Chebyshev-Galerkin-KL expansion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2472-2480. DOI: 10.11779/CJGE20220831

Reliability analysis of soil slope stability based on Chebyshev-Galerkin-KL expansion

More Information
  • Received Date: July 02, 2022
  • Available Online: March 05, 2023
  • A novel method is put forward for the random field discretization based on the Chebyshev-Galerkin-KL (Karhunen-Loève) expansion, followed by the derivation of equations for the proposed method. By means of Python language, an efficient program is exploited for automatically calculating the slope sliding volume and identifying the slope failure mode. The proposed method is validated through an unsaturated slope example subjected to water rising. The results indicate that the proposed method for the random field generation provides a new way to solve the Fredholm integral equation of the second kind, which can accurately characterize the spatial variability of geotechnical parameters. The Python-based program for risk estimation is decoupled from the random finite element calculations, which ensures the slope risk estimation with sufficient efficiency and promotes the reduction of the required time to predict the landslide risk. In addition, the obtained results from the unsaturated slope example show that a lower water rising velocity and a greater maximum water level will lead to the decrease of slope stability. The vertical spatial variability of geotechnical parameters has marginal effects on the safety factor of slopes. However, the sliding volume may be significantly affected. Attention should be paid to the negative cross-correlation between shear strength parameters when conducting reliability analysis of slope stability under water rising. Otherwise, the slope stability will be underestimated.
  • [1]
    李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422. http://www.cgejournal.com/cn/article/id/15248

    LI Dingdian, JIANG Shuihua, ZHOU Chuangbing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese) http://www.cgejournal.com/cn/article/id/15248
    [2]
    LIU L L, CHENG Y M, WANG X M, et al. System reliability analysis and risk assessment of a layered slope in spatially variable soils considering stratigraphic boundary uncertainty[J]. Computers and Geotechnics, 2017, 89: 213-225. doi: 10.1016/j.compgeo.2017.05.014
    [3]
    谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用[J]. 岩土工程学报, 2020, 42(5): 808-816. doi: 10.11779/CJGE202005002

    TAN Xiaohui, DONG Xiaole, FEI Suozhu, et al. Reliability analysis method based on KL expansion and its application[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 808-816. (in Chinese) doi: 10.11779/CJGE202005002
    [4]
    VANMARCKE E H. Probabilistic modeling of soil profiles[J]. Journal of the Geotechnical Engineering Division, 1977, 103(11): 1227-1246. doi: 10.1061/AJGEB6.0000517
    [5]
    LIU Y, LI J F, SUN S Y, et al. Advances in Gaussian random field generation: a review[J]. Computational Geosciences, 2019, 23(5): 1011-1047. doi: 10.1007/s10596-019-09867-y
    [6]
    蒋水华. 水电工程边坡可靠度非侵入式随机分析方法[D]. 武汉: 武汉大学, 2014.

    JIANG Shuihua. A Non-Intrusive Stochastic Method for Slope Reliability in Hydroelectricity Engineering[D]. Wuhan: Wuhan University, 2014. (in Chinese)
    [7]
    GHANEM R G, SPANOS P D. Stochastic Finite Element: a Spectral Approach[M]. New York: Dover Publication, 2003.
    [8]
    PHOON K K, HUANG S P, QUEK S T. Implementation of Karhunen–Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-303. doi: 10.1016/S0266-8920(02)00013-9
    [9]
    刘春凤. 应用数值分析[M]. 北京: 冶金工业出版社, 2005.

    LIU Chunfeng. Applied Numerical Analysis[M]. Beijing: Metallurgical Industry Press, 2005. (in Chinese)
    [10]
    秦权, 林道锦, 梅刚. 结构可靠度随机有限元: 理论及工程应用[M]. 北京: 清华大学出版社, 2006.

    QIN Quan, LIN Daojin, MEI Gang. Stochastic Finite Element Method for Structural Reliability: Theory and Engineering Application[M]. Beijing: Tsinghua University Press, 2006. (in Chinese)
    [11]
    SUDRET B, DER KIUREGHIAN A. Comparison of finite element reliability methods[J]. Probabilistic Engineering Mechanics, 2002, 17(4): 337-348. doi: 10.1016/S0266-8920(02)00031-0
    [12]
    仉文岗, 王琦, 陈福勇, 等. 考虑岩体空间变异性的边坡可靠度分析及抗滑桩随机响应研究[J]. 岩土力学, 2021, 42(11): 3157-3168. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111024.htm

    ZHANG Wengang, WANG Qi, CHEN Fuyong, et al. Reliability analysis of slope and random response of anti-sliding pile considering spatial variability of rock mass properties[J]. Rock and Soil Mechanics, 2021, 42(11): 3157-3168. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202111024.htm
    [13]
    HUANG J, LYAMIN A V, GRIFFITHS D V, et al. Quantitative risk assessment of landslide by limit analysis and random fields[J]. Computers and Geotechnics, 2013, 53: 60-67. doi: 10.1016/j.compgeo.2013.04.009
    [14]
    PHOON K K, KULHAWY F H. Evaluation of geotechnical property variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 625-639. doi: 10.1139/t99-039
    [15]
    FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [16]
    KIM J, HWANG W, KIM Y. Effects of hysteresis on hydro-mechanical behavior of unsaturated soil[J]. Engineering Geology, 2018, 245: 1-9. doi: 10.1016/j.enggeo.2018.08.004
    [17]
    AVERJANOV S F. About permeability of subsurface soils in case of incomplete saturation[J]. English Collection, 1950, 7: 19-21.
    [18]
    FREDLUND D G, MORGENSTERN N R, WIDGER R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321. doi: 10.1139/t78-029
    [19]
    陈朝晖, 黄凯华. 土质边坡可靠性分析的分层非平稳随机场模型[J]. 岩土工程学报, 2020, 42(7): 1247-1256. doi: 10.11779/CJGE202007008

    CHEN Zhaohui, HUANG Kaihua. Non-homogeneous random field model for reliability analysis of slopes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1247-1256. (in Chinese) doi: 10.11779/CJGE202007008
    [20]
    CHEN P, WEI C F. Numerical procedure for simulating the two-phase flow in unsaturated soils with hydraulic hysteresis[J]. International Journal of Geomechanics, 2016, 16(1): 04015030.
    [21]
    水利水电工程边坡设计规范: SL386—2007[S]. 北京: 中国水利水电出版社, 2007.

    Design Code for Engineered Slopes in Water Resources and Hydropower Projects: SL386—2007[S]. Beijing: China Water Power Press, 2007. (in Chinese)
    [22]
    李典庆, 肖特, 曹子君, 等. 基于高效随机有限元法的边坡风险评估[J]. 岩土力学, 2016, 37(7): 1994-2003. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607021.htm

    LI Dianqing, XIAO Te, CAO Zijun, et al. Slope risk assessment using efficient random finite element method[J]. Rock and Soil Mechanics, 2016, 37(7): 1994-2003. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607021.htm
  • Cited by

    Periodical cited type(2)

    1. 刘姝,李文杰,李莉佳,罗永江,陶瑞,李晓璇,杨亚会. 天然气水合物开采方法研究现状及展望. 钻探工程. 2024(05): 12-23 .
    2. 于倩男,唐慧敏,李承龙,梁爽,梁家修,陈志静,张琨. 天然气水合物注热分解渗流特征及数值模拟. 东北石油大学学报. 2023(06): 38-54+127-128 .

    Other cited types(0)

Catalog

    Article views (493) PDF downloads (190) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return