• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Fei, SONG Zhiqiang, LIU Yunhe, LI Chuang. Response characteristics and tensile failure evaluation of asphalt concrete core wall under spatial oblique incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1733-1742. DOI: 10.11779/CJGE20220804
Citation: WANG Fei, SONG Zhiqiang, LIU Yunhe, LI Chuang. Response characteristics and tensile failure evaluation of asphalt concrete core wall under spatial oblique incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1733-1742. DOI: 10.11779/CJGE20220804

Response characteristics and tensile failure evaluation of asphalt concrete core wall under spatial oblique incidence of SV waves

More Information
  • Received Date: June 26, 2022
  • Available Online: February 26, 2023
  • The existing researches on response and dynamic tensile failure of asphalt concrete core wall under spatial oblique incidence of seismic waves have great shortcomings. By considering the arbitrariness of SV-wave incident azimuth and oblique incident angles and constructing the non-uniform free field on foundation boundary based on the wave field superposition principle, an input method for spatial oblique incidence of SV waves is established. Then, an empirical formula for the change in instantaneous tensile strength of asphalt concrete with strain rate is established based on the test results. A new method for the safety evaluation of core wall based on instantaneous tensile stress and strength is proposed. Finally, the influences of incident azimuth and oblique incident angles on the acceleration and stress distributions of core wall are analyzed. The damage mechanism of core wall caused by tensile stress surge caused by spatial oblique incidence is revealed. Using the proposed method, the error of the traditional static strength judgment method for core wall damage is demonstrated. The distribution characteristics of tensile failure zone of core wall under different incident modes are clarified. The results show that compared with those under vertical incidence, the acceleration of core wall in water flow, dam axis and vertical directions can be increased by 54%, 9.2 times and 5.2 times at most under spatial oblique incidence. The tensile stress of core wall can be increased by a maximum of 14.2 times at most. Neglecting the spatial oblique incidence severely underestimates the accelerations and stresses of core wall. The more the incident direction deviates to dam axis direction and the larger the oblique incident angle, the more easily the tensile failure at the wave-facing side of core wall occurs. The traditional static strength judgment method leads to a large error of tensile failure of core wall.
  • [1]
    WANG W B, FENG S, ZHANG Y B. Investigation of interface between asphalt core and gravel transition zone in embankment dams[J]. Construction Building and Materials, 2018, 185: 148-155. doi: 10.1016/j.conbuildmat.2018.07.078
    [2]
    朱俊, 李小军, 梁建文. 地震波斜入射地下隧道地震响应: 2.5维FE-BE耦合模拟[J]. 岩土工程学报, 2022, 44(10): 1846-1854. doi: 10.11779/CJGE202210010

    ZHU Jun, LI Xiaojun, LIANG Jianwen. Seismic responses of underground tunnels subjected to obliquely incident seismic waves by 2.5D FE-BE coupling method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1846-1854. (in Chinese) doi: 10.11779/CJGE202210010
    [3]
    陈生水, 霍家平, 章为民. "5.12"汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795-801. http://www.cgejournal.com/cn/article/id/12873

    CHEN Shengshui, HUO Jiaping, ZHANG Weimin. Analysis of effects of "5.12" Wenchuan earthquake on zipingpu concrete face rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 795-801. (in Chinese) http://www.cgejournal.com/cn/article/id/12873
    [4]
    ZHANG J M, YANG Z Y, GAO X Z, et al. Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 145-156. doi: 10.1016/j.soildyn.2015.03.014
    [5]
    TAKAHIRO S. Estimation of earthquake motion incident angle at rock site[C]// Proceedings of 12th World Conference Earthquake Engineering. New Zealand, 2002: 0956.
    [6]
    SEIPHOORI A, MOHSEN HAERI S, KARIMI M. Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam–foundation interaction effects[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 792-804.
    [7]
    姚虞, 王睿, 刘天云, 等. 高面板坝地震动非一致输入响应规律[J]. 岩土力学, 2018, 39(6): 2259-2266. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806042.htm

    YAO Yu, WANG Rui, LIU Tianyun, et al. Seismic response of high concrete face rockfill dams subject to non-uniform input motion[J]. Rock and Soil Mechanics, 2018, 39(6): 2259-2266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806042.htm
    [8]
    李明超, 张佳文, 张梦溪, 等. 地震波斜入射下混凝土重力坝的塑性损伤响应分析[J]. 水利学报, 2019, 50(11): 1326-1338, 1349. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm

    LI Mingchao, ZHANG Jiawen, ZHANG Mengxi, et al. Plastic Damage response analysis of concrete gravity dam due to obliquely incident seismic waves[J]. Journal of Hydraulic Engineering, 2019, 50(11): 1326-1338, 1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm
    [9]
    FEIZI-KHANKANDI S, GHALANDARZADEH A, MIRGHASEMI A, et al. Seismic analysis of the garmrood embankment dam with asphaltic concrete core[J]. Soils and Foundations, 2009, 49(2): 153-166. doi: 10.3208/sandf.49.153
    [10]
    朱晟. 沥青混凝土心墙堆石坝三维地震反应分析[J]. 岩土力学, 2008, 29(11): 2933-2938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811009.htm

    ZHU Sheng. 3-D seismic response analysis of rockfill dam with asphalt concrete core[J]. Rock and Soil Mechanics, 2008, 29(11): 2933-2938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811009.htm
    [11]
    NING Z Y, LIU Y H, WANG W B, DONG Jing, MENG Xiao. Experimental study on effect of temperature on direct tensile behavior of hydraulic asphalt concrete at different strain rates[J]. Journal of Materials in Civil Engineering ASCE, 2022, 34(7): 04022143. doi: 10.1061/(ASCE)MT.1943-5533.0004295
    [12]
    杜修力, 赵密. 基于黏弹性边界的拱坝地震反应分析方法[J]. 水利学报, 2006, 37(9): 1063-1069. doi: 10.3321/j.issn:0559-9350.2006.09.006

    DU Xiuli, ZHAO Mi. Analysis method for seismic response of arch dams in time domain based on viscous-spring artificial boundary condition[J]. Journal of Hydraulic Engineering, 2006, 37(9): 1063-1069. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.09.006
    [13]
    FAN G, ZHANG L M, LI X Y, et al. Dynamic response of rock slopes to oblique incident SV waves[J]. Engineering Geology, 2018, 247: 94-103. doi: 10.1016/j.enggeo.2018.10.022
    [14]
    何建涛, 马怀发, 张伯艳, 等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报, 2010, 41(8): 960-969. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm

    HE Jiantao, MA Huaifa, ZHANG Boyan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8): 960-969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm
    [15]
    杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件[J]. 力学学报, 2006, 38(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200601007.htm

    DU Xiuli, ZHAO Mi, WANG Jinting. A stress artificial boundary in fea for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200601007.htm
    [16]
    史雯雨, 杨胜勇, 李增永, 等. 近57年金沙江流域气温变化特征及未来趋势预估[J]. 水土保持研究, 2021, 28(1): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202101030.htm

    SHI Wenyu, YANG Shengyong, LI Zengyong, et al. Variation characteristics and the future trend estimation of temperature in chinsha river basin over the past 57 years[J]. Research of Soil and Water Conservation, 2021, 28(1): 211-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202101030.htm
    [17]
    沈珠江, 徐刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY602.006.htm

    SHEN Zhujiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996(2): 143-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY602.006.htm
    [18]
    水工建筑物抗震设计标准: GB51247—2018[S]. 北京: 中国计划出版社.

    Standard for Seismic Design of Hydraulic Structures: GB51247—2018[S]. Beijing: China Planning Press. (in Chinese)
    [19]
    沈怀至, 张楚汉, 寇立夯. 基于功能的混凝土重力坝地震破坏评价模型[J]. 清华大学学报, 2007, 47(12): 2114-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712006.htm

    SHEN Huaizhi, ZHANG Chuhan, KOU Lihang. Performance-based seismic damage assessment model for concrete gravity dams[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(12): 2114-2118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712006.htm
  • Related Articles

    [1]LIU Shuang, LIU Hanlong, XIAO Yang. Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253
    [2]GAO You, SUN De-an, ZHANG Jun-ran, LUO Ting. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191-2196. DOI: 10.11779/CJGE201912003
    [3]YE Yun-xue, ZOU Wei-lie, HAN Zhong, LIU Xiao-wen. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. DOI: 10.11779/CJGE201905016
    [4]YE Yun-xue, ZOU Wei-lie, YUAN Fei, LIU Jia-guo. Predicating soil-water characteristic curves of soils with different initial void ratios based on a pedotransfer function[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2305-2311. DOI: 10.11779/CJGE201812019
    [5]WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019
    [6]LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021
    [7]ZOU Wei-lie, WANG Xie-qun, LUO Fang-de, ZHANG Jun-feng, YE Yun-xue, HU Zhong-wei. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. DOI: 10.11779/CJGE201709020
    [8]MA Shao-kun, HUANG Yan-zhen, CHEN Xin, JIANG Jie, SHAO Yu. Influence of excavation on adjacent rigid-flexible piles considering change of void ratio coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 140-145. DOI: 10.11779/CJGE2014S2024
    [9]CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004
    [10]MA Shao-kun<sup>1, 2, 3</sup>, SHAO Yu<sup>2, 3</sup>, HUANG Yan-zhen<sup>2, 3</sup>. Deformation of deep foundation pits due to excavation considering change of void ratio and permeability coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 940-944.
  • Cited by

    Periodical cited type(27)

    1. 冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 .
    2. 胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 .
    3. 唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 .
    4. 刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 .
    5. 喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 .
    6. 张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 . 本站查看
    7. 刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 .
    8. 程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 .
    9. 刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 .
    10. 张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 .
    11. 薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 . 本站查看
    12. 刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 .
    13. 刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 .
    14. 方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 .
    15. 蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 .
    16. 赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 . 本站查看
    17. 马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 .
    18. 刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 .
    19. 马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 .
    20. 吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
    21. 关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 .
    22. 孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 .
    23. 邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 .
    24. 王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
    25. 王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
    26. 张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 . 本站查看
    27. 陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 .

    Other cited types(47)

Catalog

    Article views (258) PDF downloads (59) Cited by(74)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return