Citation: | WANG Fei, SONG Zhiqiang, LIU Yunhe, LI Chuang. Response characteristics and tensile failure evaluation of asphalt concrete core wall under spatial oblique incidence of SV waves[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1733-1742. DOI: 10.11779/CJGE20220804 |
[1] |
WANG W B, FENG S, ZHANG Y B. Investigation of interface between asphalt core and gravel transition zone in embankment dams[J]. Construction Building and Materials, 2018, 185: 148-155. doi: 10.1016/j.conbuildmat.2018.07.078
|
[2] |
朱俊, 李小军, 梁建文. 地震波斜入射地下隧道地震响应: 2.5维FE-BE耦合模拟[J]. 岩土工程学报, 2022, 44(10): 1846-1854. doi: 10.11779/CJGE202210010
ZHU Jun, LI Xiaojun, LIANG Jianwen. Seismic responses of underground tunnels subjected to obliquely incident seismic waves by 2.5D FE-BE coupling method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1846-1854. (in Chinese) doi: 10.11779/CJGE202210010
|
[3] |
陈生水, 霍家平, 章为民. "5.12"汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795-801. http://www.cgejournal.com/cn/article/id/12873
CHEN Shengshui, HUO Jiaping, ZHANG Weimin. Analysis of effects of "5.12" Wenchuan earthquake on zipingpu concrete face rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 795-801. (in Chinese) http://www.cgejournal.com/cn/article/id/12873
|
[4] |
ZHANG J M, YANG Z Y, GAO X Z, et al. Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 145-156. doi: 10.1016/j.soildyn.2015.03.014
|
[5] |
TAKAHIRO S. Estimation of earthquake motion incident angle at rock site[C]// Proceedings of 12th World Conference Earthquake Engineering. New Zealand, 2002: 0956.
|
[6] |
SEIPHOORI A, MOHSEN HAERI S, KARIMI M. Three-dimensional nonlinear seismic analysis of concrete faced rockfill dams subjected to scattered P, SV, and SH waves considering the dam–foundation interaction effects[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(5/6): 792-804.
|
[7] |
姚虞, 王睿, 刘天云, 等. 高面板坝地震动非一致输入响应规律[J]. 岩土力学, 2018, 39(6): 2259-2266. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806042.htm
YAO Yu, WANG Rui, LIU Tianyun, et al. Seismic response of high concrete face rockfill dams subject to non-uniform input motion[J]. Rock and Soil Mechanics, 2018, 39(6): 2259-2266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806042.htm
|
[8] |
李明超, 张佳文, 张梦溪, 等. 地震波斜入射下混凝土重力坝的塑性损伤响应分析[J]. 水利学报, 2019, 50(11): 1326-1338, 1349. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm
LI Mingchao, ZHANG Jiawen, ZHANG Mengxi, et al. Plastic Damage response analysis of concrete gravity dam due to obliquely incident seismic waves[J]. Journal of Hydraulic Engineering, 2019, 50(11): 1326-1338, 1349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201911005.htm
|
[9] |
FEIZI-KHANKANDI S, GHALANDARZADEH A, MIRGHASEMI A, et al. Seismic analysis of the garmrood embankment dam with asphaltic concrete core[J]. Soils and Foundations, 2009, 49(2): 153-166. doi: 10.3208/sandf.49.153
|
[10] |
朱晟. 沥青混凝土心墙堆石坝三维地震反应分析[J]. 岩土力学, 2008, 29(11): 2933-2938. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811009.htm
ZHU Sheng. 3-D seismic response analysis of rockfill dam with asphalt concrete core[J]. Rock and Soil Mechanics, 2008, 29(11): 2933-2938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200811009.htm
|
[11] |
NING Z Y, LIU Y H, WANG W B, DONG Jing, MENG Xiao. Experimental study on effect of temperature on direct tensile behavior of hydraulic asphalt concrete at different strain rates[J]. Journal of Materials in Civil Engineering ASCE, 2022, 34(7): 04022143. doi: 10.1061/(ASCE)MT.1943-5533.0004295
|
[12] |
杜修力, 赵密. 基于黏弹性边界的拱坝地震反应分析方法[J]. 水利学报, 2006, 37(9): 1063-1069. doi: 10.3321/j.issn:0559-9350.2006.09.006
DU Xiuli, ZHAO Mi. Analysis method for seismic response of arch dams in time domain based on viscous-spring artificial boundary condition[J]. Journal of Hydraulic Engineering, 2006, 37(9): 1063-1069. (in Chinese) doi: 10.3321/j.issn:0559-9350.2006.09.006
|
[13] |
FAN G, ZHANG L M, LI X Y, et al. Dynamic response of rock slopes to oblique incident SV waves[J]. Engineering Geology, 2018, 247: 94-103. doi: 10.1016/j.enggeo.2018.10.022
|
[14] |
何建涛, 马怀发, 张伯艳, 等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报, 2010, 41(8): 960-969. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm
HE Jiantao, MA Huaifa, ZHANG Boyan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(8): 960-969. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201008014.htm
|
[15] |
杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件[J]. 力学学报, 2006, 38(1): 49-56. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200601007.htm
DU Xiuli, ZHAO Mi, WANG Jinting. A stress artificial boundary in fea for near-field wave problem[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 49-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200601007.htm
|
[16] |
史雯雨, 杨胜勇, 李增永, 等. 近57年金沙江流域气温变化特征及未来趋势预估[J]. 水土保持研究, 2021, 28(1): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202101030.htm
SHI Wenyu, YANG Shengyong, LI Zengyong, et al. Variation characteristics and the future trend estimation of temperature in chinsha river basin over the past 57 years[J]. Research of Soil and Water Conservation, 2021, 28(1): 211-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-STBY202101030.htm
|
[17] |
沈珠江, 徐刚. 堆石料的动力变形特性[J]. 水利水运科学研究, 1996(2): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY602.006.htm
SHEN Zhujiang, XU Gang. Deformation behavior of rock materials under cyclic loading[J]. Journal of Nanjing Hydraulic Research Institute, 1996(2): 143-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY602.006.htm
|
[18] |
水工建筑物抗震设计标准: GB51247—2018[S]. 北京: 中国计划出版社.
Standard for Seismic Design of Hydraulic Structures: GB51247—2018[S]. Beijing: China Planning Press. (in Chinese)
|
[19] |
沈怀至, 张楚汉, 寇立夯. 基于功能的混凝土重力坝地震破坏评价模型[J]. 清华大学学报, 2007, 47(12): 2114-2118. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712006.htm
SHEN Huaizhi, ZHANG Chuhan, KOU Lihang. Performance-based seismic damage assessment model for concrete gravity dams[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(12): 2114-2118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200712006.htm
|
[1] | LIU Shuang, LIU Hanlong, XIAO Yang. Soil-water characteristic curve considering temperature and void ratio under capillarity and adsorption[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 877-886. DOI: 10.11779/CJGE20231253 |
[2] | GAO You, SUN De-an, ZHANG Jun-ran, LUO Ting. Soil-water characteristics of unsaturated soils considering initial void ratio and hydraulic path[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2191-2196. DOI: 10.11779/CJGE201912003 |
[3] | YE Yun-xue, ZOU Wei-lie, HAN Zhong, LIU Xiao-wen. General model for relationship between void ratio and matric suction in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 927-933. DOI: 10.11779/CJGE201905016 |
[4] | YE Yun-xue, ZOU Wei-lie, YUAN Fei, LIU Jia-guo. Predicating soil-water characteristic curves of soils with different initial void ratios based on a pedotransfer function[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2305-2311. DOI: 10.11779/CJGE201812019 |
[5] | WU Qi, CHEN Guo-xing, ZHU Yu-meng, ZHOU Zheng-long, ZHOU Yan-guo. Evaluating liquefaction resistance of saturated sandy soils based on equivalent skeleton void ratio[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(10): 1912-1922. DOI: 10.11779/CJGE201810019 |
[6] | LI Shan-shan, LI Da-yong, GAO Yu-feng. Determination of maximum and minimum void ratios of sands and their influence factors[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 554-561. DOI: 10.11779/CJGE201803021 |
[7] | ZOU Wei-lie, WANG Xie-qun, LUO Fang-de, ZHANG Jun-feng, YE Yun-xue, HU Zhong-wei. Experimental study on SWCCs under equal stress and equal void ratio states[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1711-1717. DOI: 10.11779/CJGE201709020 |
[8] | MA Shao-kun, HUANG Yan-zhen, CHEN Xin, JIANG Jie, SHAO Yu. Influence of excavation on adjacent rigid-flexible piles considering change of void ratio coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 140-145. DOI: 10.11779/CJGE2014S2024 |
[9] | CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827-835. DOI: 10.11779/CJGE201405004 |
[10] | MA Shao-kun<sup>1, 2, 3</sup>, SHAO Yu<sup>2, 3</sup>, HUANG Yan-zhen<sup>2, 3</sup>. Deformation of deep foundation pits due to excavation considering change of void ratio and permeability coefficient with depth[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 940-944. |
1. |
冯海华,陆勇,黄卉. 粗粒土与结构接触面的空间曲率效应试验研究. 土工基础. 2025(01): 122-126 .
![]() | |
2. |
胡达,肖超,梁小强,孔纲强,黎永索,蒋磊,杨仙. 考虑土拱效应的盾构隧道施工地表沉降预测. 工程地质学报. 2025(02): 783-793 .
![]() | |
3. |
唐昌意,李松,李智文,崔凯,樊军伟,秦晓同. 挡墙绕顶转动下的有限土体主动土压力研究. 中国公路学报. 2025(04): 43-53 .
![]() | |
4. |
刘光秀,党发宁,宋靖宇. 竖向分层土被动土压力的计算与分析. 应用基础与工程科学学报. 2024(03): 875-887 .
![]() | |
5. |
喻卫华. 考虑基坑坑内有限土体被动土压力研究. 市政技术. 2024(06): 75-80+134 .
![]() | |
6. |
张振波,黄安,周佳迪,刘志春,孙明磊. 基坑近接地铁车站主动土压力合力算法研究. 岩土工程学报. 2024(07): 1516-1524 .
![]() | |
7. |
刘志春,马博,胡指南,张振波,杜孔泽. 邻近地下结构基坑主动土压力分布规律试验研究. 岩土力学. 2024(S1): 33-41 .
![]() | |
8. |
程振威,李又云,王传波. 减荷措施下高填涵洞竖向土压力计算. 地下空间与工程学报. 2024(06): 1790-1797 .
![]() | |
9. |
刘新喜,李彬,王玮玮,李松,贺程. 基于倾斜分层的挡墙主动土压力计算方法. 交通科学与工程. 2023(02): 41-48 .
![]() | |
10. |
张振波,周佳迪,孙明磊,刘志春,胡指南. 近接增建基坑有限土体土压力计算方法探究. 铁道科学与工程学报. 2023(06): 2091-2102 .
![]() | |
11. |
薛德敏,李天斌,张帅. 基于位移控制的双排桩桩后滑坡推力计算方法. 岩土工程学报. 2023(09): 1979-1986 .
![]() | |
12. |
刘新喜,贺程,王玮玮,李彬. 放坡状态有限土体刚性挡墙滑动稳定性分析. 交通科学与工程. 2023(05): 37-44 .
![]() | |
13. |
刘杰锋,曹海莹,王优群,高艳斌. 考虑土拱效应的黏性土主动土压力解析解. 铁道科学与工程学报. 2023(12): 4604-4612 .
![]() | |
14. |
方焘,冉井念,刘春,张婷,徐翔. 考虑位移影响的有限土体基坑土压力研究. 重庆交通大学学报(自然科学版). 2022(01): 96-102+110 .
![]() | |
15. |
蔡忠伟,朱彦鹏,武开通,马响响,丁亚飞. 临河基坑有限成层土体主动土压力计算. 科学技术与工程. 2022(02): 666-675 .
![]() | |
16. |
赖丰文,刘松玉,杨大禹,程月红,范钦建. 有限宽度填土挡墙主动土压力的普适解法. 岩土工程学报. 2022(03): 483-491 .
![]() | |
17. |
马明,李明东,郎钞棚,张京伍,万愉快. 刚性挡墙绕底转动时的非极限主动土压力数值解. 应用数学和力学. 2022(03): 312-321 .
![]() | |
18. |
刘新喜,李彬,王玮玮,贺程,李松. 基于主应力迹线分层的有限土体土压力计算. 岩土力学. 2022(05): 1175-1186 .
![]() | |
19. |
马明,李明东,张京伍,朱丽萍. 考虑层间剪应力的黏性土非极限主动土压力数值解. 广西大学学报(自然科学版). 2022(04): 854-861 .
![]() | |
20. |
吴垠龙,刘维,贾鹏蛟,史培新. 矩形顶管近距离上穿既有隧道施工扰动分析. 地下空间与工程学报. 2022(06): 1968-1978 .
![]() | |
21. |
关振长,黄金峰,何亚军,宁茂权. 基于极上限分析的临水深基坑围护结构主动土压力计算. 工程力学. 2022(11): 196-202+256 .
![]() | |
22. |
孙望成,张道兵,蒋瑾,蔚彪,尹华东. 考虑Hoek-Brown准则的挡土墙主动土压力. 吉首大学学报(自然科学版). 2021(01): 61-65 .
![]() | |
23. |
邵鹏,刘念武,房凯,黄栩,林强. 软土地区相邻深大基坑间有限土体土压力研究. 建筑施工. 2021(04): 691-695 .
![]() | |
24. |
王崇宇,刘晓平,张家强,曹周红. 刚性墙后有限宽度土体被动滑裂面特征试验研究. 岩土力学. 2021(07): 1839-1849+1860 .
![]() | |
25. |
王崇宇,刘晓平,曹周红,江旭,张家强. 刚性墙后有限宽度土体主动滑裂面特征试验研究. 岩土力学. 2021(11): 2943-2952 .
![]() | |
26. |
张常光,吴凯,隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述. 岩土工程学报. 2021(12): 2200-2208 .
![]() | |
27. |
陈建旭,钱波,郭宁,余明东,庄锦亮. 倾斜挡墙黏性填土非极限主动土压力计算. 长江科学院院报. 2021(12): 137-145 .
![]() |