Citation: | DU Zi-bo, QIAN Jian-gu, GUO Yuan-cheng, HUANG Mao-song. Constitutive modeling of plastic effects of cyclic principal stress rotation of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1493-1501. DOI: 10.11779/CJGE202208014 |
[1] |
ISHIHARA K. Soil response in cyclic loading induced by earthquakes, traffic and waves[C]// Proceedings of the 7th Asian Regional Conference Soil Mechanics and Founddation Engineering. Tokyo, 1983.
|
[2] |
王常晶, 陈云敏. 移动荷载引起的地基应力状态变化及主应力轴旋转[J]. 岩石力学与工程学报, 2007, 26(8): 1698–1704. doi: 10.3321/j.issn:1000-6915.2007.08.022
WANG Chang-jing, CHEN Yun-min. Stress state variation and principal stress axes rotation of ground induced by moving loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1698–1704. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.022
|
[3] |
TONG Z X, ZHANG J M, YU Y L, et al. Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(11): 1509–1518. doi: 10.1061/(ASCE)GT.1943-5606.0000378
|
[4] |
YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371–384. doi: 10.1680/geot.2007.57.4.371
|
[5] |
严佳佳, 周建, 龚晓南, 等. 主应力轴纯旋转条件下原状黏土变形特性研究[J]. 岩土工程学报, 2014, 36(3): 474–481. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15667.shtml
YAN Jia-jia, ZHOU Jian, GONG Xiao-nan, et al. Deformation behavior of intact clay under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 474–481. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15667.shtml
|
[6] |
QIAN J G, DU Z B, YIN Z Y. Cyclic degradation and non-coaxiality of soft clay subjected to pure rotation of principal stress directions[J]. Acta Geotechnica, 2018, 13(4): 943–959. doi: 10.1007/s11440-017-0567-8
|
[7] |
钱建固, 杜子博. 纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性[J]. 岩土工程学报, 2016, 38(8): 1381–1390. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16628.shtml
QIAN Jian-gu, DU Zi-bo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381–1390. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16628.shtml
|
[8] |
WANG Y K, GAO Y F, LI B, et al. Influence of initial state and intermediate principal stress on undrained behavior of soft clay during pure principal stress rotation[J]. Acta Geotechnica, 2019, 14(5): 1379–1401. doi: 10.1007/s11440-018-0735-5
|
[9] |
YANG Y M, YU H S. Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(1): 1–19. doi: 10.1002/nag.468
|
[10] |
钱建固, 黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报, 2006, 25(6): 1259–1264. doi: 10.3321/j.issn:1000-6915.2006.06.026
QIAN Jian-gu, HUANG Mao-song. Non-coaxial plastic flow theory in multi-dimensional stress state[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1259–1264. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.06.026
|
[11] |
WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, 1990, 116(5): 983–1001. doi: 10.1061/(ASCE)0733-9399(1990)116:5(983)
|
[12] |
TSUTSUMI S, HASHIGUCHI K. General non-proportional loading behavior of soils[J]. International Journal of Plasticity, 2005, 21(10): 1941–1969. doi: 10.1016/j.ijplas.2005.01.001
|
[13] |
LI X S, DAFALIAS Y F. A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54(1): 41–55. doi: 10.1680/geot.2004.54.1.41
|
[14] |
GAO Z W, ZHAO J D. A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution[J]. International Journal of Solids and Structures, 2017, 106/107: 200–212. doi: 10.1016/j.ijsolstr.2016.11.019
|
[15] |
童朝霞, 张建民, 张嘎. 考虑应力主轴循环旋转效应的砂土弹塑性本构模型[J]. 岩石力学与工程学报, 2009, 28(9): 1918–1927. doi: 10.3321/j.issn:1000-6915.2009.09.024
TONG Zhao-xia, ZHANG Jian-min, ZHANG Ga. An elastoplastic constitutive model of sands considering cyclic rotation of principal stress axes[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1918–1927. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.09.024
|
[16] |
LASHKARI A, LATIFI M. A non-coaxial constitutive model for sand deformation under rotation of principal stress axes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(9): 1051–1086. doi: 10.1002/nag.659
|
[17] |
GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1991, 31(4): 121–132. doi: 10.3208/sandf1972.31.4_121
|
[18] |
YANG Y M, YU H S. A kinematic hardening soil model considering the principal stress rotation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13): 2106–2134. doi: 10.1002/nag.2138
|
[19] |
TIAN Y, YAO Y P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils[J]. Acta Geotechnica, 2018, 13(6): 1299–1311. doi: 10.1007/s11440-018-0680-3
|
[20] |
陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243–251. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17278.shtml
CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243–251. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17278.shtml
|
[21] |
QIAN J G, YANG J, HUANG M S. Three-dimensional noncoaxial plasticity modeling of shear band formation in geomaterials[J]. Journal of Engineering Mechanics, 2008, 134(4): 322–329. doi: 10.1061/(ASCE)0733-9399(2008)134:4(322)
|
[22] |
LING H I, YUE D Y, KALIAKIN V N, et al. Anisotropic elastoplastic bounding surface model for cohesive soils[J]. Journal of Engineering Mechanics, 2002, 128(7): 748–758. doi: 10.1061/(ASCE)0733-9399(2002)128:7(748)
|
[23] |
黄茂松, 柳艳华. 天然软黏土屈服特性及主应力轴旋转效应的本构模拟[J]. 岩土工程学报, 2011, 33(11): 1667–1675. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14413.shtml
HUANG Mao-song, LIU Yan-hua. Simulation of yield characteristics and principal stress rotation effects of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1667–1675. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14413.shtml
|
[24] |
HUANG M S, LIU Y H, SHENG D C. Simulation of yielding and stress-stain behavior of Shanghai soft clay[J]. Computers and Geotechnics, 2011, 38(3): 341–353. doi: 10.1016/j.compgeo.2010.12.005
|
[25] |
LI X S. Rotational shear effects on ground earthquake response[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(1): 9–19. doi: 10.1016/S0267-7261(96)00032-2
|
[26] |
YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451–469. doi: 10.1680/geot.2007.00029
|
[27] |
YAO Y P, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54–78. doi: 10.1002/nag.2545
|
[28] |
LI X S. A sand model with state-dapendent dilatancy[J]. Géotechnique, 2002, 52(3): 173–186. doi: 10.1680/geot.2002.52.3.173
|
[29] |
DAFALIAS Y F, HERRMANN L R. A generalized bounding surface constitutive model for clays[C]// Application of Plasticity and Generalized Stress-strain in Geotechnical Engineering. Hollywood, 1982.
|
[30] |
GRAHAM J, HOULSBY G T. Anisotropic elasticity of a natural clay[J]. Géotechnique, 1983, 33(2): 165–180. doi: 10.1680/geot.1983.33.2.165
|
[31] |
尹振宇, 顾晓强, 金银富. 土的小应变刚度特性[M]. 上海: 同济大学出版社, 2017.
YIN Zhen-yu, GU Xiao-qiang, JIN Yin-fu. Small Strain Stiffness of Soils[M]. Shanghai: Tongji University Press, 2017. (in Chinese)
|
[32] |
张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 15–20. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract10443.shtml
ZHANG Jian-min. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 15–20. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract10443.shtml
|
[33] |
LADE P, KIRKGARD M M. Effects of stress rotation and changes of B-values on cross-anisotropic behavior of natural, K0-consolidated soft clay[J]. Soils and Foundations, 2000, 40(6): 93–105. doi: 10.3208/sandf.40.6_93
|
[34] |
沈扬. 考虑主应力方向变化的原状软黏土试验研究[D]. 杭州: 浙江大学, 2007.
SHEN Yang. Experimental Study on Effect of Variation of Principal Stress Orientation on Undisturbed Soft Clay[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
|
[35] |
LI X S, DAFALIAS Y F. Noncoaxiality between two tensors with application to stress rate decomposition and fabric anisotropy variable[J]. Journal of Engineering Mechanics, 2020, 146(3): 04020004. doi: 10.1061/(ASCE)EM.1943-7889.0001730
|
[36] |
BARDET J P, CHOUCAIR W. A linearized integration technique for incremental constitutive equations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1991, 15(1): 1–19. doi: 10.1002/nag.1610150102
|
[37] |
NAKASE A, KAMEI T, KUSAKABE O. Constitutive parameters estimated by plasticity index[J]. Journal of Geotechnical Engineering, 1988, 114(7): 844–858. doi: 10.1061/(ASCE)0733-9410(1988)114:7(844)
|
[38] |
王立忠, 沈恺伦. K0固结结构性软黏土的旋转硬化规律研究[J]. 岩土工程学报, 2008, 30(6): 863–872. doi: 10.3321/j.issn:1000-4548.2008.06.014
WANG Li-zhong, SHEN Kai-lun. Rotational hardening law of K0 consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 863–872. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.06.014
|