• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DU Zi-bo, QIAN Jian-gu, GUO Yuan-cheng, HUANG Mao-song. Constitutive modeling of plastic effects of cyclic principal stress rotation of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1493-1501. DOI: 10.11779/CJGE202208014
Citation: DU Zi-bo, QIAN Jian-gu, GUO Yuan-cheng, HUANG Mao-song. Constitutive modeling of plastic effects of cyclic principal stress rotation of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1493-1501. DOI: 10.11779/CJGE202208014

Constitutive modeling of plastic effects of cyclic principal stress rotation of natural soft clay

More Information
  • Received Date: September 13, 2021
  • Available Online: September 22, 2022
  • A constitutive model which can reflect the plastic effects of the principal stress rotation of natural soft clay is proposed based on the anisotropic bounding surface model. For the unloading conditions of the cyclic principal stress rotation, the mapping rules of relocatable projection center is incorporated to deal with the plastic deformation under these unloading conditions. The plastic accumulation behavior with a cyclic fluctuation pattern is described reasonably by incorporating the inherent anisotropic elasticity. Meanwhile, the non-coaxiality variation during cyclic rotation is simulated by considering the influences of stress ratio and coupling the non-coaxial flow with coaxial flow. The proposed model is validated through the undrained behaviors tests under the pure principal stress rotation of Wenzhou natural soft clay. The results show that the proposed bounding surface model can reasonably capture the deformation effects of the cyclic principal stress rotation of natural soft clay.
  • [1]
    ISHIHARA K. Soil response in cyclic loading induced by earthquakes, traffic and waves[C]// Proceedings of the 7th Asian Regional Conference Soil Mechanics and Founddation Engineering. Tokyo, 1983.
    [2]
    王常晶, 陈云敏. 移动荷载引起的地基应力状态变化及主应力轴旋转[J]. 岩石力学与工程学报, 2007, 26(8): 1698–1704. doi: 10.3321/j.issn:1000-6915.2007.08.022

    WANG Chang-jing, CHEN Yun-min. Stress state variation and principal stress axes rotation of ground induced by moving loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1698–1704. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.022
    [3]
    TONG Z X, ZHANG J M, YU Y L, et al. Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(11): 1509–1518. doi: 10.1061/(ASCE)GT.1943-5606.0000378
    [4]
    YANG Z X, LI X S, YANG J. Undrained anisotropy and rotational shear in granular soil[J]. Géotechnique, 2007, 57(4): 371–384. doi: 10.1680/geot.2007.57.4.371
    [5]
    严佳佳, 周建, 龚晓南, 等. 主应力轴纯旋转条件下原状黏土变形特性研究[J]. 岩土工程学报, 2014, 36(3): 474–481. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15667.shtml

    YAN Jia-jia, ZHOU Jian, GONG Xiao-nan, et al. Deformation behavior of intact clay under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 474–481. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15667.shtml
    [6]
    QIAN J G, DU Z B, YIN Z Y. Cyclic degradation and non-coaxiality of soft clay subjected to pure rotation of principal stress directions[J]. Acta Geotechnica, 2018, 13(4): 943–959. doi: 10.1007/s11440-017-0567-8
    [7]
    钱建固, 杜子博. 纯主应力轴旋转下饱和软黏土的循环弱化及非共轴性[J]. 岩土工程学报, 2016, 38(8): 1381–1390. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16628.shtml

    QIAN Jian-gu, DU Zi-bo. Cyclic degradation and non-coaxiality of saturated soft clay subjected to pure rotation of principal stress axis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1381–1390. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16628.shtml
    [8]
    WANG Y K, GAO Y F, LI B, et al. Influence of initial state and intermediate principal stress on undrained behavior of soft clay during pure principal stress rotation[J]. Acta Geotechnica, 2019, 14(5): 1379–1401. doi: 10.1007/s11440-018-0735-5
    [9]
    YANG Y M, YU H S. Numerical simulations of simple shear with non-coaxial soil models[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(1): 1–19. doi: 10.1002/nag.468
    [10]
    钱建固, 黄茂松. 复杂应力状态下岩土体的非共轴塑性流动理论[J]. 岩石力学与工程学报, 2006, 25(6): 1259–1264. doi: 10.3321/j.issn:1000-6915.2006.06.026

    QIAN Jian-gu, HUANG Mao-song. Non-coaxial plastic flow theory in multi-dimensional stress state[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1259–1264. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.06.026
    [11]
    WANG Z L, DAFALIAS Y F, SHEN C K. Bounding surface hypoplasticity model for sand[J]. Journal of Engineering Mechanics, 1990, 116(5): 983–1001. doi: 10.1061/(ASCE)0733-9399(1990)116:5(983)
    [12]
    TSUTSUMI S, HASHIGUCHI K. General non-proportional loading behavior of soils[J]. International Journal of Plasticity, 2005, 21(10): 1941–1969. doi: 10.1016/j.ijplas.2005.01.001
    [13]
    LI X S, DAFALIAS Y F. A constitutive framework for anisotropic sand including non-proportional loading[J]. Géotechnique, 2004, 54(1): 41–55. doi: 10.1680/geot.2004.54.1.41
    [14]
    GAO Z W, ZHAO J D. A non-coaxial critical-state model for sand accounting for fabric anisotropy and fabric evolution[J]. International Journal of Solids and Structures, 2017, 106/107: 200–212. doi: 10.1016/j.ijsolstr.2016.11.019
    [15]
    童朝霞, 张建民, 张嘎. 考虑应力主轴循环旋转效应的砂土弹塑性本构模型[J]. 岩石力学与工程学报, 2009, 28(9): 1918–1927. doi: 10.3321/j.issn:1000-6915.2009.09.024

    TONG Zhao-xia, ZHANG Jian-min, ZHANG Ga. An elastoplastic constitutive model of sands considering cyclic rotation of principal stress axes[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1918–1927. (in Chinese) doi: 10.3321/j.issn:1000-6915.2009.09.024
    [16]
    LASHKARI A, LATIFI M. A non-coaxial constitutive model for sand deformation under rotation of principal stress axes[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(9): 1051–1086. doi: 10.1002/nag.659
    [17]
    GUTIERREZ M, ISHIHARA K, TOWHATA I. Flow theory for sand during rotation of principal stress direction[J]. Soils and Foundations, 1991, 31(4): 121–132. doi: 10.3208/sandf1972.31.4_121
    [18]
    YANG Y M, YU H S. A kinematic hardening soil model considering the principal stress rotation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13): 2106–2134. doi: 10.1002/nag.2138
    [19]
    TIAN Y, YAO Y P. Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils[J]. Acta Geotechnica, 2018, 13(6): 1299–1311. doi: 10.1007/s11440-018-0680-3
    [20]
    陈洲泉, 黄茂松. 砂土各向异性与非共轴特性的本构模拟[J]. 岩土工程学报, 2018, 40(2): 243–251. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17278.shtml

    CHEN Zhou-quan, HUANG Mao-song. Constitutive modeling of anisotropic and non-coaxial behaviors of sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 243–251. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17278.shtml
    [21]
    QIAN J G, YANG J, HUANG M S. Three-dimensional noncoaxial plasticity modeling of shear band formation in geomaterials[J]. Journal of Engineering Mechanics, 2008, 134(4): 322–329. doi: 10.1061/(ASCE)0733-9399(2008)134:4(322)
    [22]
    LING H I, YUE D Y, KALIAKIN V N, et al. Anisotropic elastoplastic bounding surface model for cohesive soils[J]. Journal of Engineering Mechanics, 2002, 128(7): 748–758. doi: 10.1061/(ASCE)0733-9399(2002)128:7(748)
    [23]
    黄茂松, 柳艳华. 天然软黏土屈服特性及主应力轴旋转效应的本构模拟[J]. 岩土工程学报, 2011, 33(11): 1667–1675. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14413.shtml

    HUANG Mao-song, LIU Yan-hua. Simulation of yield characteristics and principal stress rotation effects of natural soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1667–1675. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14413.shtml
    [24]
    HUANG M S, LIU Y H, SHENG D C. Simulation of yielding and stress-stain behavior of Shanghai soft clay[J]. Computers and Geotechnics, 2011, 38(3): 341–353. doi: 10.1016/j.compgeo.2010.12.005
    [25]
    LI X S. Rotational shear effects on ground earthquake response[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(1): 9–19. doi: 10.1016/S0267-7261(96)00032-2
    [26]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451–469. doi: 10.1680/geot.2007.00029
    [27]
    YAO Y P, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54–78. doi: 10.1002/nag.2545
    [28]
    LI X S. A sand model with state-dapendent dilatancy[J]. Géotechnique, 2002, 52(3): 173–186. doi: 10.1680/geot.2002.52.3.173
    [29]
    DAFALIAS Y F, HERRMANN L R. A generalized bounding surface constitutive model for clays[C]// Application of Plasticity and Generalized Stress-strain in Geotechnical Engineering. Hollywood, 1982.
    [30]
    GRAHAM J, HOULSBY G T. Anisotropic elasticity of a natural clay[J]. Géotechnique, 1983, 33(2): 165–180. doi: 10.1680/geot.1983.33.2.165
    [31]
    尹振宇, 顾晓强, 金银富. 土的小应变刚度特性[M]. 上海: 同济大学出版社, 2017.

    YIN Zhen-yu, GU Xiao-qiang, JIN Yin-fu. Small Strain Stiffness of Soils[M]. Shanghai: Tongji University Press, 2017. (in Chinese)
    [32]
    张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 15–20. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract10443.shtml

    ZHANG Jian-min. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 15–20. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract10443.shtml
    [33]
    LADE P, KIRKGARD M M. Effects of stress rotation and changes of B-values on cross-anisotropic behavior of natural, K0-consolidated soft clay[J]. Soils and Foundations, 2000, 40(6): 93–105. doi: 10.3208/sandf.40.6_93
    [34]
    沈扬. 考虑主应力方向变化的原状软黏土试验研究[D]. 杭州: 浙江大学, 2007.

    SHEN Yang. Experimental Study on Effect of Variation of Principal Stress Orientation on Undisturbed Soft Clay[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
    [35]
    LI X S, DAFALIAS Y F. Noncoaxiality between two tensors with application to stress rate decomposition and fabric anisotropy variable[J]. Journal of Engineering Mechanics, 2020, 146(3): 04020004. doi: 10.1061/(ASCE)EM.1943-7889.0001730
    [36]
    BARDET J P, CHOUCAIR W. A linearized integration technique for incremental constitutive equations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1991, 15(1): 1–19. doi: 10.1002/nag.1610150102
    [37]
    NAKASE A, KAMEI T, KUSAKABE O. Constitutive parameters estimated by plasticity index[J]. Journal of Geotechnical Engineering, 1988, 114(7): 844–858. doi: 10.1061/(ASCE)0733-9410(1988)114:7(844)
    [38]
    王立忠, 沈恺伦. K0固结结构性软黏土的旋转硬化规律研究[J]. 岩土工程学报, 2008, 30(6): 863–872. doi: 10.3321/j.issn:1000-4548.2008.06.014

    WANG Li-zhong, SHEN Kai-lun. Rotational hardening law of K0 consolidated structured soft clays[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 863–872. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.06.014

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return