• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Hong-yu, HUANG Mao-song, TANG Zhen. Three-dimensional undrained stability analysis of circular tunnels based on combined mechanism of a translational block and a shear zone[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1376-1385. DOI: 10.11779/CJGE202208002
Citation: WANG Hong-yu, HUANG Mao-song, TANG Zhen. Three-dimensional undrained stability analysis of circular tunnels based on combined mechanism of a translational block and a shear zone[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1376-1385. DOI: 10.11779/CJGE202208002

Three-dimensional undrained stability analysis of circular tunnels based on combined mechanism of a translational block and a shear zone

More Information
  • Received Date: June 02, 2021
  • Available Online: September 22, 2022
  • Three-dimensional tunnel face stability analysis in heterogeneous undrained clay is carried out by using the combined mechanism of a translational block and a shear zone. The stability factor of tunnels of the simple shear-rotational mechanism proposed by the previous study is corrected as the energy dissipation along the discontinuity surface is omitted. Through in-depth discussion on the block mechanism and shear flow mechanism, the gap between the upper-bounds from the existing mechanisms with the centrifugal test results and the solutions from the finite element method is clarified. The mechanism consisting of a translational cylindrical block and a toroidal shear zone is further proposed to significantly improve the upper-bound solutions from the existing analytical mechanisms when the tunnel cover to depth ratio is relatively large. The effectiveness of practical engineering evaluation methods is also discussed.
  • [1]
    DAVIS E H, GUNN M J, MAIR R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Géotechnique, 1980, 30(4): 397-416. doi: 10.1680/geot.1980.30.4.397
    [2]
    MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis and design of circular tunnels against face stability[J]. International Journal of Geomechanics, 2009, 9(6): 237-249. doi: 10.1061/(ASCE)1532-3641(2009)9:6(237)
    [3]
    MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 215-229. doi: 10.1061/(ASCE)GT.1943-5606.0000194
    [4]
    宋春霞, 黄茂松, 周维祥. 黏土地层隧道开挖面三维稳定性上限分析[J]. 岩土工程学报, 2015, 37(4): 650-658. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504012.htm

    SONG Chun-xia, HUANG Mao-song, ZHOU Wei-xiang. Three-dimensional face stability analysis of tunnels in cohesive soils by upper bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 650-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504012.htm
    [5]
    杨峰, 赵炼恒, 张箭, 等. 基于刚体平动运动单元的上限有限元研究[J]. 岩土力学, 2014, 35(6): 1782-1786, 1808. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406042.htm

    YANG Feng, ZHAO Lian-heng, ZHANG Jian, et al. Investigation on finite element upper bound solution based on rigid translatory moving element[J]. Rock and Soil Mechanics, 2014, 35(6): 1782-1786, 1808. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406042.htm
    [6]
    杨峰, 何诗华, 吴遥杰, 等. 非均质黏土地层隧道开挖面稳定运动单元上限有限元分析[J]. 岩土力学, 2020, 41(4): 1412-1419, 1436. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004034.htm

    YANG Feng, HE Shi-hua, WU Yao-jie, et al. Tunnel face stability analysis by the upper-bound finite element method with rigid translatory moving element in heterogeneous clay[J]. Rock and Soil Mechanics, 2020, 41(4): 1412-1419, 1436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004034.htm
    [7]
    KIMURA T, MAIR R J. Centrifugal testing of model tunnels in soft clay[C]// Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 1981: 319-322.
    [8]
    周维祥. 非均质黏土地基隧道开挖面稳定性分析[D]. 上海: 同济大学, 2011.

    ZHOU Wei-xiang. Stability of Shield Tunnel Excavation in Undrained Condition[D]. Shanghai: Tongji University, 2011. (in Chinese)
    [9]
    KLAR A, OSMAN A S, BOLTON M. 2D and 3D upper bound solutions for tunnel excavation using 'elastic' flow fields[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(12): 1367-1374. doi: 10.1002/nag.597
    [10]
    MOLLON G, DIAS D, SOUBRA A H. Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13): 2061-2083. doi: 10.1002/nag.2121
    [11]
    KLAR A, KLEIN B. Energy-based volume loss prediction for tunnel face advancement in clays[J]. Géotechnique, 2014, 64(10): 776-786. doi: 10.1680/geot.14.P.024
    [12]
    ZHANG F, GAO Y F, WU Y X, et al. Upper-bound solutions for face stability of circular tunnels in undrained clays[J]. Géotechnique, 2018, 68(1): 76-85. doi: 10.1680/jgeot.16.T.028
    [13]
    ZHANG F, GAO Y F, WU Y X, et al. Face stability analysis of large-diameter slurry shield-driven tunnels with linearly increasing undrained strength[J]. Tunnelling and Underground Space Technology, 2018, 78: 178-187. doi: 10.1016/j.tust.2018.04.018
    [14]
    黄茂松. 土体稳定与承载特性的分析方法[J]. 岩土工程学报, 2016, 38(1): 1-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601002.htm

    HUANG Mao-song. Analysis methods for stability and bearing capacity of soils[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 1-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201601002.htm
    [15]
    唐震. 黏土地层基坑抗隆起及隧道开挖面稳定性上限分析[D]. 上海: 同济大学, 2018.

    TANG Zhen. Upper-bound Solutions for Basal Stability of Braced Excavations and Face Stability of Tunnels in Undrained Clay[D]. Shanghai: Tongji University, 2018. (in Chinese)
    [16]
    HUANG M S, TANG Z, ZHOU W X, et al. Upper bound solutions for face stability of circular tunnels in non-homogeneous and anisotropic clays[J]. Computers and Geotechnics, 2018, 98: 189-196. doi: 10.1016/j.compgeo.2018.02.015
    [17]
    BROMS B B, BENNERMARK H. Stability of clay at vertical opening[J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(1): 71-94. doi: 10.1061/JSFEAQ.0000946
    [18]
    刘建航, 侯学渊. 盾构法隧道[M]. 北京: 中国铁道出版社, 1991.

    LIU Jian-hang, HOU Xue-yuan. Sheild tunneling method[M]. Beijing: China Railway Publishing House, 1991. (in Chinese)
    [19]
    HORN N. Horizontal earth pressure on the vertical surfaces of the tunnel tubes[C]// Proceedings of National Conference of the Hungarian Civil Engineering Industry. Budapest: Hungary, 1962: 7-16.
    [20]
    CHEN W F. Limit analysis and soil plasticity[M]. Amsterdam: Elsevier, 1975.
    [21]
    GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3): 387-403. doi: 10.1680/geot.1999.49.3.387
    [22]
    张子新, 胡文. 黏性土地层中盾构隧道开挖面支护压力计算方法探讨[J]. 岩石力学与工程学报, 2014, 33(3): 606-614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403022.htm

    ZHANG Zi-xin, HU Wen. Investigation on excavation face support pressure calculation methods of shield tunnelling in clayey soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(3): 606-614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201403022.htm
    [23]
    HUANG M S, LI S, YU J, et al. Continuous field based upper bound analysis for three-dimensional tunnel face stability in undrained clay[J]. Computers and Geotechnics, 2018, 94: 207-213. doi: 10.1016/j.compgeo.2017.09.014
    [24]
    ANTÃO A N, DA SILVA M V, MONTEIRO N, et al. Upper and lower bounds for three-dimensional undrained stability of shallow tunnels[J]. Transportation Geotechnics, 2021, 27(3): 100491.
  • Cited by

    Periodical cited type(15)

    1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 .
    2. 胡静,金林廉,吕志豪,张家康,边学成. 基于考虑变形效应的土-水特征曲线求解非饱和地基动力响应. 岩土工程学报. 2025(02): 397-406 . 本站查看
    3. 周葆春,江星澐,马全国,单丽霞,王江伟,李颖,易先达,孔令伟. 低应力和湿化路径下膨胀土的力学行为与本构模拟. 岩土工程学报. 2025(04): 695-704 . 本站查看
    4. 李佳文,陈高明,田世龙,韩博文,冯怀平,杨志浩. 土体含水率对振动压实的影响及电阻率演化特征研究. 振动与冲击. 2025(07): 16-25 .
    5. 吴炎,胡坤,姜马欢,李荟楠,彭哲. 两种气体作用下非饱和江边吹填砂三轴试验研究. 人民长江. 2024(02): 211-215+230 .
    6. 赵中航,林昱利,郭浩天,刘全想,任淇淇. 温度及饱和度对粉质黏土变形特性的影响. 低温建筑技术. 2024(02): 119-123 .
    7. 赵习武. 土工格室在库岸非饱和土边坡稳定性治理中的应用. 水利技术监督. 2024(06): 276-278+282 .
    8. 张莹,刘忠,谢文博. 非饱和土地基的承载比试验分析. 工程与建设. 2024(02): 417-419 .
    9. 尹义豪,钟小春,何子良,黄思远,何纯豪,高始军,张箭. 考虑压力、温度效应的黏性土黏附强度变化规律研究. 现代隧道技术. 2024(03): 175-183 .
    10. 朱振慧,赵连军,张防修,黄李冰. 基于黏粒含量的黄河下游堤防土水特征曲线预测研究. 人民黄河. 2024(10): 55-61 .
    11. 陈可,王琛,梁发云,汪中卫. 考虑水力滞后与变形耦合的非饱和土持水曲线模型. 岩土力学. 2024(12): 3694-3704+3716 .
    12. 李纯,王煜斌,王刚. 层状土体变特性及变形计算方法研究进展. 水利与建筑工程学报. 2023(04): 1-9 .
    13. 权国绍,刘鹏. 强降雨条件下高填路段路基滑坡稳定性数值优化分析. 粘接. 2023(11): 165-168 .
    14. 周子宜. 鸡姆塘水库大坝除险加固渗流与坝坡稳定分析. 水利科学与寒区工程. 2023(11): 33-36 .
    15. 上官云龙,李东鑫,王罡. 冻融循环对膨胀土力学特性的影响及本构描述. 吉林建筑大学学报. 2023(06): 33-38 .

    Other cited types(11)

Catalog

    Article views PDF downloads Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return