• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAI Peifu, DING Hao, YANG Dandi, SHI Yanghui, XIE Haijian, JIN Aimin, CHEN Yun. Semi-analytical model for transport of organic contaminants in composite liners considering attenuation of reaction parameters[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1684-1692. DOI: 10.11779/CJGE20220773
Citation: CAI Peifu, DING Hao, YANG Dandi, SHI Yanghui, XIE Haijian, JIN Aimin, CHEN Yun. Semi-analytical model for transport of organic contaminants in composite liners considering attenuation of reaction parameters[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1684-1692. DOI: 10.11779/CJGE20220773

Semi-analytical model for transport of organic contaminants in composite liners considering attenuation of reaction parameters

More Information
  • Received Date: June 16, 2022
  • Available Online: February 26, 2023
  • In order to investigate the influences of the attenuating characteristics of reaction parameters including adsorption and degradation in the clay liners under the geomembrane on the antifouling performances of composite liners, the attenuation of reaction parameters is expressed as a specific function. The one-dimensional semi-analytical solution for transport of organic contaminants in composite liners is obtained by the Laplace transformation. The semi-analytical model is validated through the field test data. The results of dimensionless analysis show that when the reaction parameters in CCL decrease rapidly with the increase of depth (e.g, β=0.1), the breakthrough time can be reduced by 68%. The bottom concentrations and fluxes can be reduced by 40% when the diffusion and degradation dominate transport of contaminants (e.g., Pe2≤1 and Q≥10). The attenuation effects of the reaction parameters can be ignored when the advection is the dominant process (e.g., Pe2≥10 and Q≤1). Without considering the attenuation of reaction parameters, the breakthrough concentration of hydrophilic organic contaminants and hydrophobic organic contaminants can be underestimated by 61% and 37% respectively. The field monitoring data can be better fitted by the proposed model, and it can be used to evaluate the effectiveness of landfill liners. It can also be used for the design of composite liners and the verification of complex numerical models.
  • [1]
    陈云敏, 谢海建, 张春华. 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    CHEN Yunmin, XIE Haijian, ZHANG Chunhua. Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm
    [2]
    SHU S, ZHU W, WANG S W, et al. Leachate breakthrough mechanism and key pollutant indicator of municipal solid waste landfill barrier systems: Centrifuge and numerical modeling approach[J]. Science of the Total Environment, 2018, 612: 1123-1131. doi: 10.1016/j.scitotenv.2017.08.185
    [3]
    DU Y J, SHEN S L, LIU S Y, et al. Contaminant mitigating performance of Chinese standard municipal solid waste landfill liner systems[J]. Geotextiles and Geomembranes, 2009, 27(3): 232-239. doi: 10.1016/j.geotexmem.2008.11.007
    [4]
    KALBE U, MÜLLER W W, BERGER W, et al. Transport of organic contaminants within composite liner systems[J]. Applied Clay Science, 2002, 21(1/2): 67-76.
    [5]
    FOOSE G J. Transit-time design for diffusion through composite liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(7): 590-601. doi: 10.1061/(ASCE)1090-0241(2002)128:7(590)
    [6]
    PENG M Q, FENG S J, CHEN H X, et al. Analytical model for organic contaminant transport through GMB/CCL composite liner with finite thickness considering adsorption, diffusion and thermodiffusion[J]. Waste Management, 2021, 120: 448-458. doi: 10.1016/j.wasman.2020.10.004
    [7]
    YAN H X, WU J W, THOMAS H R, et al. Analytical model for coupled consolidation and diffusion of organic contaminant transport in triple landfill liners[J]. Geotextiles and Geomembranes, 2021, 49(2): 489-499. doi: 10.1016/j.geotexmem.2020.10.019
    [8]
    XIE H J, DING H, YAN H X, et al. A semi-analytical solution to organic contaminants transport through composite liners considering a single crack in CCL[J]. Environmental Science and Pollution Research, 2022, 29(27): 40768-40780. doi: 10.1007/s11356-021-18171-1
    [9]
    YU C, LIU J F, MA J J, et al. Study on transport and transformation of contaminant through layered soil with large deformation[J]. Environmental Science and Pollution Research, 2018, 25(13): 12764-12779. doi: 10.1007/s11356-018-1325-7
    [10]
    FLURY M, WU Q J, WU L S, et al. Analytical solution for solute transport with depth-dependent transformation or sorption coefficients[J]. Water Resources Research, 1998, 34(11): 2931-2937. doi: 10.1029/98WR02299
    [11]
    VRYZAS Z, PAPADAKIS E N, ORIAKLI K, et al. Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities[J]. Chemosphere, 2012, 89(11): 1330-1338. doi: 10.1016/j.chemosphere.2012.05.087
    [12]
    ZHAN T L T, GUAN C, XIE H J, et al. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation[J]. The Science of the Total Environment, 2014, 470/471: 290-298. doi: 10.1016/j.scitotenv.2013.09.081
    [13]
    BREZA-BORUTA B, LEMANOWICZ J, BARTKOWIAK A. Variation in biological and physicochemical parameters of the soil affected by uncontrolled landfill sites[J]. Environmental Earth Sciences, 2016, 75(3): 201. doi: 10.1007/s12665-015-4955-9
    [14]
    REGADÍO M, RUIZ A I, DE SOTO I S, et al. Pollution profiles and physicochemical parameters in old uncontrolled landfills[J]. Waste Management, 2012, 32(3): 482-497. doi: 10.1016/j.wasman.2011.11.008
    [15]
    SONG L Y, WANG Y Q, ZHAO H P, et al. Composition of bacterial and archaeal communities during landfill refuse decomposition processes[J]. Microbiological Research, 2015, 181: 105-111. doi: 10.1016/j.micres.2015.04.009
    [16]
    DONG J, DING L J, WANG X, et al. Vertical profiles of community abundance and diversity of anaerobic methanotrophic Archaea (ANME) and bacteria in a simple waste landfill in North China[J]. Applied Biochemistry and Biotechnology, 2015, 175(5): 2729-2740. doi: 10.1007/s12010-014-1456-3
    [17]
    GAO G Y, FU B J, ZHAN H B, et al. Contaminant transport in soil with depth-dependent reaction coefficients and time-dependent boundary conditions[J]. Water Research, 2013, 47(7): 2507-2522. doi: 10.1016/j.watres.2013.02.021
    [18]
    谢海建, 陈云敏, 楼章华. 污染物通过有缺陷膜复合衬垫的一维运移解析解[J]. 中国科学: 技术科学, 2010, 40(5): 486-495. doi: 10.3969/j.issn.0253-2778.2010.05.0008

    XIE Haijian, CHEN Yunmin, LOU Zhanghua. Analytical solution of one-dimensional migration of pollutants through defective membrane composite liner[J]. Scientia Sinica (Technologica), 2010, 40(5): 486-495. (in Chinese) doi: 10.3969/j.issn.0253-2778.2010.05.0008
    [19]
    ROWE R K, QUIGLEY R M, BRACHMAN R W I, et al. Barrier Systems for Waste Disposal[M]. London and New York: E & FN Spon, 2004.
    [20]
    ROWE R K, ABDELATTY K. Modeling contaminant transport through composite liner with a hole in the geomembrane[J]. Canadian Geotechnical Journal, 2012, 49(7): 773-781. doi: 10.1139/t2012-038
    [21]
    谢海建. 成层介质污染物的运移机理及衬垫系统防污性能研究[D]. 杭州: 浙江大学, 2008.

    XIE Haijian. A Study on Contaminant Transport in Layered Media and the Performance of Landfill Liner Systems[D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    [22]
    ABATE J, WHITT W. A unified framework for numerically inverting Laplace transforms[J]. INFORMS Journal on Computing, 2006, 18(4): 408-421. doi: 10.1287/ijoc.1050.0137
    [23]
    徐亚, 能昌信, 刘玉强, 等. 垃圾填埋场HDPE膜漏洞密度及其影响因素的统计分析[J]. 环境工程学报, 2015, 9(9): 4558-4564. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm

    XU Ya, NAI Changxin, LIU Yuqiang, et al. Statistical analysis on density of accidental-hole in landfill liner system[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4558-4564. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201509076.htm
    [24]
    ROWE R K, BRACHMAN R W I. Assessment of equivalence of composite liners[J]. Geosynthetics International, 2004, 11(4): 273-286. doi: 10.1680/gein.2004.11.4.273
    [25]
    ROWE R K, CHAPPEL M J, BRACHMAN R W I, et al. Field study of wrinkles in a geomembrane at a composite liner test site[J]. Canadian Geotechnical Journal, 2012, 49(10): 1196-1211. doi: 10.1139/t2012-083
    [26]
    ZHAN L T, CHEN C, WANG Y, et al. Failure probability assessment and parameter sensitivity analysis of a contaminant's transit time through a compacted clay liner[J]. Computers and Geotechnics, 2017, 86: 230-242. doi: 10.1016/j.compgeo.2017.01.014
    [27]
    SANGAM H P, ROWE R K. Migration of dilute aqueous organic pollutants through HDPE geomembranes[J]. Geotextiles and Geomembranes, 2001, 19(6): 329-357. doi: 10.1016/S0266-1144(01)00013-9
    [28]
    XIE H J, JIANG Y S, ZHANG C H, et al. Steady-state analytical models for performance assessment of landfill composite liners[J]. Environmental Science and Pollution Research, 2015, 22(16): 12198-12214. doi: 10.1007/s11356-015-4200-9
  • Related Articles

    [1]Effect of temperature on swelling behaviors of compacted bentonite in an annular technological void[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240956
    [2]LIU Xiaoyan, LIU Lulu, CAI Guojun, LIU Songyu. Evolution of swelling pressure properties of bentonite-sand-graphite buffer materials under action of temperature and salt/alkali[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2463-2471. DOI: 10.11779/CJGE20220821
    [3]MA Jing, CHEN Yonggui, LIU Cong, YE Weimin, WANG Qiong. Research progress in mechanisms of swelling pressures of compacted bentonite under chemical conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2042-2051. DOI: 10.11779/CJGE20220911
    [4]LIANG Weiyun, WEI Changfu, ZHANG Qin, QIN Liuyang, WEN Songsong, YAN Rongtao. Swelling pressure evolution and water distribution characteristics of bentonite during wetting process[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 283-291. DOI: 10.11779/CJGE20211496
    [5]YE Wei-min, LIU Zhang-rong, CUI Yu-jun, ZHANG Zhao, WANG Qiong, CHEN Yong-gui. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. DOI: 10.11779/CJGE202001003
    [6]YANG Zhou-jie, YU Hai-hao, TANG Qin, TIAN Hui-hui, WEI Chang-fu. Effects of sodium chloride solution on swelling pressure and pore distribution of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 77-80. DOI: 10.11779/CJGE2019S2020
    [7]LIU Hong-fu, WANG Shi-ji, LI Xian, LIANG Guang-chuan, SHEN Tai-yu, HE Bing-hui. Experimental study on three-dimensional swelling pressure of highly expansive clay in Handan district of China[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 789-796. DOI: 10.11779/CJGE201904025
    [8]CHEN Yong-gui, LI Quan, JIA Ling-yan, YE Wei-min, CUI Yu-jun, CHEN Bao. Decay characteristics of swelling pressure of compacted bentonite under salinity gradient cycling[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 872-879. DOI: 10.11779/CJGE201805012
    [9]LAI Xiao-ling, YE Wei-min, LIU Yi, CHEN Bao, WANG Qiong. Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 574-579. DOI: 10.11779/CJGE201403022
    [10]QIN Bing, CHEN Zhenghan, LIU Yuemiao, WANG Ju. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(5): 756-763.

Catalog

    Article views (301) PDF downloads (58) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return