Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIA Yuanyou, ZHANG Hongwei, LIN Manqing, YAN Yaofeng. Prediction of tunnel rockbursts based on data preprocessing technology considering influences of stress gradient of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1987-1994. DOI: 10.11779/CJGE20220701
Citation: XIA Yuanyou, ZHANG Hongwei, LIN Manqing, YAN Yaofeng. Prediction of tunnel rockbursts based on data preprocessing technology considering influences of stress gradient of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1987-1994. DOI: 10.11779/CJGE20220701

Prediction of tunnel rockbursts based on data preprocessing technology considering influences of stress gradient of surrounding rock

More Information
  • Received Date: May 31, 2022
  • Available Online: October 16, 2023
  • As the current rockburst prediction investigation frequently ignores outliers, missing values, sample imbalance in the rockburst dataset and the influences of surrounding rock stress gradient, a complete preprocessing process of rockburst data is proposed, and the hole diameter index that indirectly represents the stress gradient of surrounding rock of tunnel is employed to establish the multi-factor comprehensive prediction model for tunnel rockbursts. At the stage of the data collection, considering the variation in stress conditions between the tunnel, stope and tunnel group, 306 samples of rockbursts in tunnels are isolated from the rockburst database. At the stage of determining prediction index, five indices are selected including the hole diameter (D0), the maximum tangential stress (σθmax), the uniaxial compressive strength (σc), the uniaxial tensile strength of the rock (σt) and the elastic energy deformation index (Wet). At the stage of the data preprocessing, the multiple imputation method of random forest (MI-RF) is introduced to fill in the missing values. Three unsupervised algorithms including the K-nearest neighbor (KNN), the isolation forest (IForest) and the local outlier factor (LOF) are introduced to comprehensively evaluate the rockburst dataset and removed outliers. The adaptive comprehensive oversampling (ADASYN) algorithm is introduced to expand the number of minority samples. At the stage of the model validation, five types of models including the support vector machine (SVM), the random forest (RF), the gradient boosted decision trees (GBDT), the adaptive boosting algorithm (AdaBoost) and the extreme gradient boosting algorithm (XGBoost) are adopted for comparison. The results demonstrate that the aforementioned models based on the data preprocessing and the hole diameter index are all the best among similar algorithm models. Without the data preprocessing, the model considering the hole diameter index is better than those without considering the hole diameter.
  • [1]
    FENG X T, LIU J, CHEN B, et al. Monitoring, warning, and control of rockburst in deep metal mines[J]. Engineering, 2017, 3(4): 538-545. doi: 10.1016/J.ENG.2017.04.013
    [2]
    宫凤强, 潘俊锋, 江权. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 2021, 29(4): 933-961. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104003.htm

    GONG Fengqiang, PAN Junfeng, JIANG Quan. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 2021, 29(4): 933-961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104003.htm
    [3]
    张传庆, 俞缙, 陈珺, 等. 地下工程围岩潜在岩爆问题评估方法[J]. 岩土力学, 2016, 37(增刊1): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1046.htm

    ZHANG Chuanqing, YU Jin, CHEN Jun, et al. Evaluation method for potential rockburst in underground engineering[J]. Rock and Soil Mechanics, 2016, 37(S1): 341-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1046.htm
    [4]
    徐琛, 刘晓丽, 王恩志, 等. 基于组合权重-理想点法的应变型岩爆五因素预测分级[J]. 岩土工程学报, 2017, 39(12): 2245-2252. doi: 10.11779/CJGE201712013

    XU Chen, LIU Xiaoli, WANG Enzhi, et al. Prediction and classification of strain mode rockburst based on five-factor criterion and combined weight-ideal point method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2245-2252. (in Chinese) doi: 10.11779/CJGE201712013
    [5]
    WANG C, WU A, LU H, et al. Predicting rockburst tendency based on fuzzy matter-element model[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 224-232. doi: 10.1016/j.ijrmms.2015.02.004
    [6]
    贾义鹏, 吕庆, 尚岳全, 等. 基于证据理论的岩爆预测[J]. 岩土工程学报, 2014, 36(6): 1079-1086. doi: 10.11779/CJGE201406013

    JIA Yipeng, LÜ Qing, SHANG Yuequan, et al. Rockburst prediction based on evidence theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1079-1086. (in Chinese) doi: 10.11779/CJGE201406013
    [7]
    高玮. 基于蚁群聚类算法的岩爆预测研究[J]. 岩土工程学报, 2010, 32(6): 874-880. http://www.cgejournal.com/cn/article/id/13417

    GAO WEI. Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 874-880. (in Chinese) http://www.cgejournal.com/cn/article/id/13417
    [8]
    PU Y, APEL D B, WANG C, et al. Evaluation of burst liability in kimberlite using support vector machine[J]. Acta Geophysica, 2018, 66: 973-982.
    [9]
    WANG C, CHUAI X, SHI F, et al. Experimental investigation of predicting rockburst using Bayesian model[J]. Geomechanics & engineering, 2018, 15(6): 1153-1160.
    [10]
    谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报, 2021, 40(6): 1186-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106010.htm

    TAN Wenkan, YE Yicheng, HU Nanyan, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1186-1194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106010.htm
    [11]
    YIN X, LIU Q, PAN Y, et al. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models[J]. Natural Resources Research, 2021, 30(2): 1795–1815.
    [12]
    夏元友, 刘昌昊, 刘夕奇, 等. 均布与梯度应力加载路径下岩爆破坏特征试验[J]. 中国安全科学学报, 2020, 30(5): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202005025.htm

    XIA Yuanyou, LIU Changhao, LIU Xiqi, et al. Experimental study on rockburst characteristics under uniform and gradient stress loading paths[J]. China Safety Science Journal, 2020, 30(5): 149-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202005025.htm
    [13]
    何佳其, 吝曼卿, 刘夕奇, 等. 引入梯度应力的岩爆预测方法[J]. 岩土工程学报, 2020, 42(11): 2098–2105. doi: 10.11779/CJGE202011015

    HE Guiqi, LIN Manqing, LIU Xiqi, et al. New method for introducing gradient stress into rock-burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2098-2105. (in Chinese) doi: 10.11779/CJGE202011015
    [14]
    刘长武, 曹磊, 刘树新. 深埋非圆形地下洞室围岩应力解析分析的"当量半径"法[J]. 铜业工程, 2010(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201001003.htm

    LIU Changwu, CAO Lei, LIU Shuxin. Method of "equivalent radius" for the analyzing rock stress of high-buried non-circular underground chambers[J]. Copper Engineering, 2010(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201001003.htm
    [15]
    ZHOU J, LI X, MITRI H S. Classification of rockburst in underground projects: comparison of ten supervised learning methods[J]. Journal of Computing in Civil Engineering, 2016, 30(5): 04016003.
    [16]
    李准, 苗勇刚, 夏志远. 深部矿山巷道岩爆倾向性预测及防治技术研究[J]. 有色金属(矿山部分), 2021, 73(3): 41-47, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202103008.htm

    LI Zhun, MIAO Yonggang, XIA Zhiyuan. Study on rockburst tendency prediction and prevention technology of deep mine roadway[J]. Nonferrous Metals (Mining Section), 2021, 73(3): 41-47, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202103008.htm
    [17]
    QIU D H, LI T B, XUE Y G, et al. Rockburst prediction based on distance discrimination method and optimization technology-based weight calculation method[J]. Electronic Journal of Geotechnical Engineering, 2014, 19: 1843-1854.
    [18]
    王庆武. 拉林铁路桑珠岭隧道地应力场分析及岩爆预测研究[D]. 成都: 成都理工大学, 2017.

    WANG Qinwu. Analysis of Geostress Field and Rockburst Prediction in the Sang Zhuling Tunnel of Lasa-Linzhi Railway Engineering[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese)
    [19]
    易迪青. 沪昆高铁雪峰山隧道岩爆灾害评估与防治[D]. 北京: 北京交通大学, 2014.

    YI Diqing. Rock Burst Disaster Assessment and Prevention in Xuefeng Mountain Tunnel of Shanghai-Kunming High-Speed Railway[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [20]
    XUE Y G, BAI C H, KONG F M, et al. A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria[J]. Engineering Geology, 2020, 268: 105515.
    [21]
    WU S C, WU Z G, ZHANG C X. Rock burst prediction probability model based on case analysis[J]. Tunnelling and Underground Space Technology, 2019, 93(03069): 1-15.
    [22]
    JIA Q J, WU L, LI B, et al. The comprehensive prediction model of rockburst tendency in tunnel based on optimized unascertained measure theory[J]. Geotechnical and Geological Engineering, 2019, 37: 3399-3411.
    [23]
    XUE Y G, LI Z Q, LI S C, et al. Prediction of rock burst in underground caverns based on rough set and extensible comprehensive evaluation[J]. Bulletin of engineering geology and the environment, 2019, 78(1): 417-429.
    [24]
    LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. Acm Transactions on Knowledge Discovery from Data, 2012, 6(1): 1–39.
    [25]
    HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]// 2008 IEEE International Joint Conference on Neural Networks, HongKong, 2008.
    [26]
    贾义鹏, 吕庆, 尚岳全. 基于粒子群算法和广义回归神经网络的岩爆预测[J]. 岩石力学与工程学报, 2013, 32(2): 343-348. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302015.htm

    JIA Yipeng, LÜ Qing, SHANG Yuequan. Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 343-348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302015.htm

Catalog

    Article views (522) PDF downloads (172) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return