Citation: | XIA Yuanyou, ZHANG Hongwei, LIN Manqing, YAN Yaofeng. Prediction of tunnel rockbursts based on data preprocessing technology considering influences of stress gradient of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 1987-1994. DOI: 10.11779/CJGE20220701 |
[1] |
FENG X T, LIU J, CHEN B, et al. Monitoring, warning, and control of rockburst in deep metal mines[J]. Engineering, 2017, 3(4): 538-545. doi: 10.1016/J.ENG.2017.04.013
|
[2] |
宫凤强, 潘俊锋, 江权. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J]. 工程地质学报, 2021, 29(4): 933-961. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104003.htm
GONG Fengqiang, PAN Junfeng, JIANG Quan. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 2021, 29(4): 933-961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104003.htm
|
[3] |
张传庆, 俞缙, 陈珺, 等. 地下工程围岩潜在岩爆问题评估方法[J]. 岩土力学, 2016, 37(增刊1): 341-349. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1046.htm
ZHANG Chuanqing, YU Jin, CHEN Jun, et al. Evaluation method for potential rockburst in underground engineering[J]. Rock and Soil Mechanics, 2016, 37(S1): 341-349. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1046.htm
|
[4] |
徐琛, 刘晓丽, 王恩志, 等. 基于组合权重-理想点法的应变型岩爆五因素预测分级[J]. 岩土工程学报, 2017, 39(12): 2245-2252. doi: 10.11779/CJGE201712013
XU Chen, LIU Xiaoli, WANG Enzhi, et al. Prediction and classification of strain mode rockburst based on five-factor criterion and combined weight-ideal point method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2245-2252. (in Chinese) doi: 10.11779/CJGE201712013
|
[5] |
WANG C, WU A, LU H, et al. Predicting rockburst tendency based on fuzzy matter-element model[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75: 224-232. doi: 10.1016/j.ijrmms.2015.02.004
|
[6] |
贾义鹏, 吕庆, 尚岳全, 等. 基于证据理论的岩爆预测[J]. 岩土工程学报, 2014, 36(6): 1079-1086. doi: 10.11779/CJGE201406013
JIA Yipeng, LÜ Qing, SHANG Yuequan, et al. Rockburst prediction based on evidence theory[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1079-1086. (in Chinese) doi: 10.11779/CJGE201406013
|
[7] |
高玮. 基于蚁群聚类算法的岩爆预测研究[J]. 岩土工程学报, 2010, 32(6): 874-880. http://www.cgejournal.com/cn/article/id/13417
GAO WEI. Prediction of rock burst based on ant colony clustering algorithm[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 874-880. (in Chinese) http://www.cgejournal.com/cn/article/id/13417
|
[8] |
PU Y, APEL D B, WANG C, et al. Evaluation of burst liability in kimberlite using support vector machine[J]. Acta Geophysica, 2018, 66: 973-982.
|
[9] |
WANG C, CHUAI X, SHI F, et al. Experimental investigation of predicting rockburst using Bayesian model[J]. Geomechanics & engineering, 2018, 15(6): 1153-1160.
|
[10] |
谭文侃, 叶义成, 胡南燕, 等. LOF与改进SMOTE算法组合的强烈岩爆预测[J]. 岩石力学与工程学报, 2021, 40(6): 1186-1194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106010.htm
TAN Wenkan, YE Yicheng, HU Nanyan, et al. Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1186-1194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106010.htm
|
[11] |
YIN X, LIU Q, PAN Y, et al. Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models[J]. Natural Resources Research, 2021, 30(2): 1795–1815.
|
[12] |
夏元友, 刘昌昊, 刘夕奇, 等. 均布与梯度应力加载路径下岩爆破坏特征试验[J]. 中国安全科学学报, 2020, 30(5): 149-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202005025.htm
XIA Yuanyou, LIU Changhao, LIU Xiqi, et al. Experimental study on rockburst characteristics under uniform and gradient stress loading paths[J]. China Safety Science Journal, 2020, 30(5): 149-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202005025.htm
|
[13] |
何佳其, 吝曼卿, 刘夕奇, 等. 引入梯度应力的岩爆预测方法[J]. 岩土工程学报, 2020, 42(11): 2098–2105. doi: 10.11779/CJGE202011015
HE Guiqi, LIN Manqing, LIU Xiqi, et al. New method for introducing gradient stress into rock-burst prediction[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2098-2105. (in Chinese) doi: 10.11779/CJGE202011015
|
[14] |
刘长武, 曹磊, 刘树新. 深埋非圆形地下洞室围岩应力解析分析的"当量半径"法[J]. 铜业工程, 2010(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201001003.htm
LIU Changwu, CAO Lei, LIU Shuxin. Method of "equivalent radius" for the analyzing rock stress of high-buried non-circular underground chambers[J]. Copper Engineering, 2010(1): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGC201001003.htm
|
[15] |
ZHOU J, LI X, MITRI H S. Classification of rockburst in underground projects: comparison of ten supervised learning methods[J]. Journal of Computing in Civil Engineering, 2016, 30(5): 04016003.
|
[16] |
李准, 苗勇刚, 夏志远. 深部矿山巷道岩爆倾向性预测及防治技术研究[J]. 有色金属(矿山部分), 2021, 73(3): 41-47, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202103008.htm
LI Zhun, MIAO Yonggang, XIA Zhiyuan. Study on rockburst tendency prediction and prevention technology of deep mine roadway[J]. Nonferrous Metals (Mining Section), 2021, 73(3): 41-47, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSKU202103008.htm
|
[17] |
QIU D H, LI T B, XUE Y G, et al. Rockburst prediction based on distance discrimination method and optimization technology-based weight calculation method[J]. Electronic Journal of Geotechnical Engineering, 2014, 19: 1843-1854.
|
[18] |
王庆武. 拉林铁路桑珠岭隧道地应力场分析及岩爆预测研究[D]. 成都: 成都理工大学, 2017.
WANG Qinwu. Analysis of Geostress Field and Rockburst Prediction in the Sang Zhuling Tunnel of Lasa-Linzhi Railway Engineering[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese)
|
[19] |
易迪青. 沪昆高铁雪峰山隧道岩爆灾害评估与防治[D]. 北京: 北京交通大学, 2014.
YI Diqing. Rock Burst Disaster Assessment and Prevention in Xuefeng Mountain Tunnel of Shanghai-Kunming High-Speed Railway[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
|
[20] |
XUE Y G, BAI C H, KONG F M, et al. A two-step comprehensive evaluation model for rockburst prediction based on multiple empirical criteria[J]. Engineering Geology, 2020, 268: 105515.
|
[21] |
WU S C, WU Z G, ZHANG C X. Rock burst prediction probability model based on case analysis[J]. Tunnelling and Underground Space Technology, 2019, 93(03069): 1-15.
|
[22] |
JIA Q J, WU L, LI B, et al. The comprehensive prediction model of rockburst tendency in tunnel based on optimized unascertained measure theory[J]. Geotechnical and Geological Engineering, 2019, 37: 3399-3411.
|
[23] |
XUE Y G, LI Z Q, LI S C, et al. Prediction of rock burst in underground caverns based on rough set and extensible comprehensive evaluation[J]. Bulletin of engineering geology and the environment, 2019, 78(1): 417-429.
|
[24] |
LIU F T, TING K M, ZHOU Z H. Isolation-based anomaly detection[J]. Acm Transactions on Knowledge Discovery from Data, 2012, 6(1): 1–39.
|
[25] |
HE H, BAI Y, GARCIA E A, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]// 2008 IEEE International Joint Conference on Neural Networks, HongKong, 2008.
|
[26] |
贾义鹏, 吕庆, 尚岳全. 基于粒子群算法和广义回归神经网络的岩爆预测[J]. 岩石力学与工程学报, 2013, 32(2): 343-348. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302015.htm
JIA Yipeng, LÜ Qing, SHANG Yuequan. Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 343-348. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201302015.htm
|