• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xin, WU Wenbing, WANG Lixing, LIU Hao, MEI Guoxiong, WEN Minjie. Generalized axisymmetric continuous circle model for longitudinal vibration of large-diameter piles and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1916-1925. DOI: 10.11779/CJGE20220671
Citation: LIU Xin, WU Wenbing, WANG Lixing, LIU Hao, MEI Guoxiong, WEN Minjie. Generalized axisymmetric continuous circle model for longitudinal vibration of large-diameter piles and its application[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1916-1925. DOI: 10.11779/CJGE20220671

Generalized axisymmetric continuous circle model for longitudinal vibration of large-diameter piles and its application

More Information
  • Received Date: May 23, 2022
  • Available Online: March 05, 2023
  • There exist two main deficiencies in the existing theoretical researches about the longitudinal vibration characteristics of large-diameter piles: (1) The pile models applied fail to consider sufficiently the three-dimensional (3D) wave effects of the pile body. (2) The dynamic characteristics within the low frequency range lack essential attention, which is much more important in practice. Regarding the two deficiencies, an innovative theoretical model called the generalized axisymmetric continuous circle model for investigating the longitudinal vibration of large-diameter piles is proposed. The pile is treated as the 3D continuous medium and the surrounding soil is stratified into several zones along the radial direction. The analytical solutions for the complex stiffness of the pile top are obtained by applying the coupled conditions between the adjacent soil zones and those at the pile-soil interface. After its rationality is verified, the proposed model is used to study the vibration characteristics of the large-diameter piles within the low frequency range. The laws and mechanisms of the construction disturbance effects are specifically discussed, and several new phenomena and useful conclusions are obtained, which may support a much more complete theoretical basis for the dynamic design and bearing capacity analysis of large-diameter piles.
  • [1]
    NOVAK M, HAN Y C. Impedances of soil layer with boundary zone[J]. Journal of Geotechnical Engineering, 1990, 116(6): 1008-1014. doi: 10.1061/(ASCE)0733-9410(1990)116:6(1008)
    [2]
    NOVAK M, NOGAMI T, ABOUL-ELLA F. Dynamic soil reactions for plane strain case[J]. Journal of the Engineering Mechanics Division, 1978, 104(4): 953-959. doi: 10.1061/JMCEA3.0002392
    [3]
    LAKSHMANAN N, MINAI R. Dynamic soil reactions in radially non-homogeneous soil media[J]. Bulletin of the Disaster Prevention Research Institute, 1981, 31(2): 79-114.
    [4]
    VELETSOS A S, DOTSON K W. Vertical and torsional vibration of foundations in inhomogeneous media[J]. Journal of Geotechnical Engineering, 1988, 114(9): 1002-1021. doi: 10.1061/(ASCE)0733-9410(1988)114:9(1002)
    [5]
    EL NAGGAR M H, NOVAK M. Analytical model for an innovative pile test[J]. Canadian Geotechnical Journal, 1992, 29(4): 569-579. doi: 10.1139/t92-064
    [6]
    EL NAGGAR M H, NOVAK M. Non & hyphen; Linear model for dynamic axial pile response[J]. Journal of Geotechnical Engineering, 1994, 120(2): 308-329. doi: 10.1061/(ASCE)0733-9410(1994)120:2(308)
    [7]
    EL NAGGAR M H. Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering and Mechanics, 2000, 10(4): 299-312. doi: 10.12989/sem.2000.10.4.299
    [8]
    王奎华, 杨冬英, 张智卿. 基于复刚度传递多圈层平面应变模型的桩动力响应研究[J]. 岩石力学与工程学报, 2008, 27(4): 825-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804026.htm

    WANG Kuihua, YANG Dongying, ZHANG Zhiqing. Study on dynamic response of pile based on complex stiffness transfer model of radial multizone plane strain[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(4): 825-831. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200804026.htm
    [9]
    周铁桥, 王奎华, 谢康和, 等. 轴对称径向非均质土中桩的纵向振动特性分析[J]. 岩土工程学报, 2005, 27(6): 720-725. doi: 10.11779/CJGE201808008

    ZHOU Tieqiao, WANG Kuihua, XIE Kanghe, et al. Vertical vibration analysis of piles in radial heterogeneous soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 720-725. (in Chinese) doi: 10.11779/CJGE201808008
    [10]
    吴文兵, 谢帮华, 黄生根, 等. 考虑挤土效应时楔形桩纵向振动阻抗研究[J]. 地震工程学报, 2015, 37(4): 1042-1048. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201504022.htm

    WU Wenbing, XIE Banghua, HUANG Shenggen, et al. Vertical dynamic impedance of tapered piles considering compacting effects[J]. China Earthquake Engineering Journal, 2015, 37(4): 1042-1048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201504022.htm
    [11]
    陈凡, 王仁军. 尺寸效应对基桩低应变完整性检测的影响[J]. 岩土工程学报, 1998, 20(5): 92-96. http://www.cgejournal.com/cn/article/id/10201

    CHEN Fan, WANG Renjun. Influence of size effect on low strain integrity test of foundation pile[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 92-96. (in Chinese) http://www.cgejournal.com/cn/article/id/10201
    [12]
    CHAI H Y, PHOON K K, ZHANG D J. Effects of the source on wave propagation in pile integrity testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1200-1208. doi: 10.1061/(ASCE)GT.1943-5606.0000272
    [13]
    荣垂强, 赵晓华. 基桩反射波法三维干扰成因与最佳采样方法研究[J]. 岩土工程学报, 2017, 39(9): 1731-1738. doi: 10.11779/CJGE201709023

    RONG Chuiqiang, ZHAO Xiaohua. Three-dimensional interference sources and optimal sampling location of piles utilizing reflected wave method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9): 1731-1738. (in Chinese) doi: 10.11779/CJGE201709023
    [14]
    崔春义, 梁志孟, 许成顺, 等. 基于轴对称连续介质模型的径向非均质土中大直径管桩纵向振动特性研究[J]. 岩石力学与工程学报, 2022, 41(5): 1031-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205014.htm

    CUI Chunyi, LIANG Zhimeng, XU Chengshun, et al. Research of longitudinal vibration characteristics of large-diameter pipe piles in radially heterogeneous soils based on axisymmetric continuum model[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 1031-1044. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202205014.htm
    [15]
    刘汉龙, 丁选明. 现浇薄壁管桩在低应变瞬态集中荷载作用下的动力响应解析解[J]. 岩土工程学报, 2007, 29(11): 1611-1617. http://www.cgejournal.com/cn/article/id/12660

    LIU Hanlong, DING Xuanming. Analytical solution of dynamic response of cast-in-situ concrete thin-wall pipe piles under transient concentrated load with low strain[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1611-1617. (in Chinese) http://www.cgejournal.com/cn/article/id/12660
    [16]
    DING X M, LIU H L, KONG G Q, et al. Time-domain analysis of velocity waves in a pipe pile due to a transient point load[J]. Computers and Geotechnics, 2014, 58: 101-116.
    [17]
    DING X M, LIU H L, LIU J Y, et al. Wave propagation in a pipe pile for low-strain integrity testing[J]. Journal of Engineering Mechanics, 2011, 137(9): 598-609. http://www.onacademic.com/detail/journal_1000036870595610_fa87.html
    [18]
    ZHENG C J, KOURETZIS G P, DING X M, et al. Three-dimensional effects in low-strain integrity testing of piles: analytical solution[J]. Canadian Geotechnical Journal, 2015, 53(2): 225-235.
    [19]
    ZHENG C J, LIU H L, DING X M, et al. Non-axisymmetric response of piles in low-strain integrity testing[J]. Géotechnique, 2017, 67(2): 181-186.
    [20]
    ZHENG C J, DING X M, KOURETZIS G P, et al. Three-dimensional propagation of waves in piles during low-strain integrity tests[J]. Géotechnique, 2018, 68(4): 358-363.
    [21]
    MENG K, CUI C Y, LIANG Z M, et al. A new approach for longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil considering the three-dimensional wave effects[J]. Computers and Geotechnics, 2020, 128: 103840.
    [22]
    LIU X, EL NAGGAR M H, WANG K, et al. Theoretical analysis of three-dimensional effect in pile integrity test[J]. Computers and Geotechnics, 2020, 127: 103765. http://www.sciencedirect.com/science/article/pii/S0266352X20303281
    [23]
    LIU X, EL NAGGAR M H, WANG K H, et al. Three-dimensional axisymmetric analysis of pile vertical vibration[J]. Journal of Sound and Vibration, 2021, 494: 115881.
    [24]
    王奎华, 阙仁波, 夏建中. 考虑土体真三维波动效应时桩的振动理论及对近似理论的校核[J]. 岩石力学与工程学报, 2005, 24(8): 1362-1370. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200508018.htm

    WANG Kuihua, QUE Renbo, XIA Jianzhong. Theory of pile vibration considering true three-dimensional wave effect of soil and its check on the approximate theories[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(8): 1362-1370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200508018.htm
  • Related Articles

    [1]WANG Weiyu, LEI Guohui, ZHAO Xin, DAI Chuanjie, GU Yuxi. Understanding governing equations for one-dimensional finite strain consolidation of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 829-839. DOI: 10.11779/CJGE20240077
    [2]LIU Hua-xuan, LIU Dong-jia, LU Zhi-tang, TAO Jun, JIANG Jing. Numerical calculation of three-dimensional elastic wave equation of piles staggered grid finite difference using method with variable step lengths[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1754-1760. DOI: 10.11779/CJGE201409024
    [3]YAN Shu-wang, JIA Zhao-lin, GUO Bing-chuan, SUN Li-qiang. Consolidation characteristics of fillings by variable coefficients finite difference method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 496-500.
    [4]LIANG Fa-yun, LI Yan-chu, HUANG Mao-song. Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk1): 300-304.
    [5]ZHANG Ming, ZHAO You-ming, LIU Guo-nan, HU Rong-hua. Finite difference solution to equation for large-strain consolidation of double-layered vertical drain ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1666-1674.
    [6]Design method of micropile group for soil slope stabilization based on ultimate resistance of analysis[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1671-1677.
    [7]Coupling method of two-dimensional discontinuum-continuum based on contact between particle and element[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10).
    [8]A solution of Gibson’s governing equation of one-dimensional consolidation[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5).
    [9]ZHANG Hua, LU Yang. Numerical method for retaining structures based on coupled finite difference method and discrete element method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1402-1407.
    [10]DAI Zihang, CHEN Linjing. Two numerical solutions of laterally loaded piles installed in multi-layered soils by m method[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(5): 690-696.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return