• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
HE Zhaokui, SU Baoyu, SHENG Jinchang, LUO Yulong. Seepage analysis based on weak finite element method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1526-1532. DOI: 10.11779/CJGE20220635
Citation: HE Zhaokui, SU Baoyu, SHENG Jinchang, LUO Yulong. Seepage analysis based on weak finite element method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1526-1532. DOI: 10.11779/CJGE20220635

Seepage analysis based on weak finite element method

More Information
  • Received Date: May 16, 2022
  • Available Online: February 23, 2023
  • In the design and operation management of hydraulic structures such as dams, gates and embankments, the seepage calculation plays a very important role. The current methods for seepage analysis are mainly based on the general finite element method. It is often hoped, by refining the mesh, to pursue the calculated results with higher-precision in the seepage analysis. However, the general finite element method, which belongs to the coordinated finite element method, cannot handle hybrid grids, and the refined mesh may lead to unstable calculation formats and the divergence of the calculated results. The weak finite element method is a non-coordinated one, which replaces the classical gradient operator in the variational formula for the general finite element method with the weak gradient operator of the weak function, and adds a stable sub-term in the variational formula, to obtain an absolute stability of the calculation format, and it can handle hybrid grids. For the same mesh grid, the degree of freedom of the overall algebraic equations for the weak finite element method is much larger than that of the general finite element method. In order to reduce the degree of freedom of the weak finite element method, the targeted mixed meshing grid is used to establish the weak finite element method which is used to solve the free surface of seepage and to analyze the seepage field of the gate foundation with anti-seepage curtain. The numerical simulation shows that the weak finite element method can be used to process flexibly hybrid grids, and it is of high accuracy.
  • [1]
    BASSI F, REBAY S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations[J]. Journal of Computational Physics, 1997, 131(2): 267-279. doi: 10.1006/jcph.1996.5572
    [2]
    COCKBURN B, SHU C W. The local discontinuous Galerkin method for time-dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6): 2440-2463. doi: 10.1137/S0036142997316712
    [3]
    COCKBURN B, GOPALAKRISHNAN J, LAZAROV R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems[J]. SIAM Journal on Numerical Analysis, 2009, 47(2): 1319-1365. doi: 10.1137/070706616
    [4]
    何朝葵, 速宝玉, 盛金昌. 稳定渗流分析的局部间断伽辽金有限元法[J]. 河海大学学报(自然科学版), 2012, 40(2): 206-210. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201202018.htm

    HE Zhaokui, SU Baoyu, SHENG Jinchang. Local discontinuous Galerkin finite element method for steady seepage analysis[J]. Journal of Hohai University (Natural Sciences), 2012, 40(2): 206-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201202018.htm
    [5]
    WANG J P, YE X. A weak Galerkin finite element method for second-order elliptic problems[J]. Journal of Computational and Applied Mathematics, 2013, 241: 103-115. doi: 10.1016/j.cam.2012.10.003
    [6]
    王军平, 叶秀, 张然. 弱有限元方法简论[J]. 计算数学, 2016, 38(3): 289-308. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm

    WANG Junping, YE Xiu, ZHANG Ran. Basics of weak Galerkin finite element methods[J]. Mathematica Numerica Sinica, 2016, 38(3): 289-308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm
    [7]
    朱弘泽, 林莉, 周晨光, 等. 弱Galerkin有限元法的稳定性[J]. 吉林大学学报(理学版), 2018, 56(6): 1427-1430. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201806025.htm

    ZHU Hongze, LIN Li, ZHOU Chenguang, et al. Stability of weak Galerkin finite element method[J]. Journal of Jilin University (Science Edition), 2018, 56(6): 1427-1430. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX201806025.htm
    [8]
    WANG J P, YE X. A weak Galerkin finite element method for the stokes equations[J]. Advances in Computational Mathematics, 2016, 42(1): 155-174. doi: 10.1007/s10444-015-9415-2
    [9]
    MU L, WANG J P, YE X, et al. A numerical study on the weak Galerkin method for the Helmholtz equation[J]. Communications in Computational Physics, 2014, 15(5): 1461-1479. doi: 10.4208/cicp.251112.211013a
    [10]
    MU L, WANG J P, YE X, et al. A weak Galerkin finite element method for the maxwell equations[J]. Journal of Scientific Computing, 2015, 65(1): 363-386. doi: 10.1007/s10915-014-9964-4
    [11]
    张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm

    ZHANG Ran. Weak Galerkin finite element method for linear elasticity problems[J]. Mathematica Numerica Sinica, 2020, 42(1): 1-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX202001001.htm
    [12]
    张然, 翟起龙. 偏微分方程特征值问题的弱有限元方法[J]. 中国科学: 数学, 2019, 49(12): 1979-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201912015.htm

    ZHANG Ran, ZHAI Qilong. Weak Galerkin finite element methods for PDE eigenvalue problems[J]. Scientia Sinica (Mathematica), 2019, 49(12): 1979-1994. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201912015.htm
    [13]
    吴梦喜, 张学勤. 有自由面渗流分析的虚单元法[J]. 水利学报, 1994, 25(8): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB408.009.htm

    WU Mengxi, ZHANG Xueqin. Imaginary element method for numerical analysis of seepage with free surface[J]. Journal of Hydraulic Engineering, 1994, 25(8): 67-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB408.009.htm
    [14]
    速宝玉, 沈振中, 赵坚. 用变分不等式理论求解渗流问题的截止负压法[J]. 水利学报, 1996, 27(3): 22-29, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB603.003.htm

    SU Baoyu, SHEN Zhenzhong, ZHAO Jian. The cut-off negative pressure method for soling filtration problems based on the theory of variational inequalities[J]. Journal of Hydraulic Engineering, 1996, 27(3): 22-29, 35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB603.003.htm
    [15]
    王贤能, 黄润秋. 有自由面渗流分析的高斯点法[J]. 水文地质工程地质, 1997, 24(6): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG706.000.htm

    WANG Xianneng, HUANG Runqiu. Gavss point method for seepage analysis with free surface[J]. Hydrogeology and Engineering Geology, 1997, 24(6): 1-4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG706.000.htm
    [16]
    党发宁, 王晓章, 郑忠安, 等. 有自由面渗流分析的变单元渗透系数法[J]. 西北水力发电, 2004, 20(1): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-SXFD200401001.htm

    DANG Faning, WANG Xiaozhang, ZHENG Zhongan, et al. Variable element seepage coefficient method for seepage numerical analysis with free surface[J]. Journal of NOTHUCEST RYDOOELECTNICPOWER, 2004, 20(1): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXFD200401001.htm
    [17]
    孙伟建, 侯兴民, 李远东, 等. 基于虚单元法求解渗流自由面的曲线拟合法[J]. 水力发电, 2016, 42(11): 50-53, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201611013.htm

    SUN Weijian, HOU Xingmin, LI Yuandong, et al. A curve fitting method based on virtual element method for solving seepage free surface[J]. Water Power, 2016, 42(11): 50-53, 67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD201611013.htm
  • Other Related Supplements

Catalog

    Article views (308) PDF downloads (86) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return