• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZOU Degao, GONG Jin, KONG Xianjing, QU Yongqian, LIU Jingmao, CHEN Kai. Local large deformation between cut-off wall and core wall on deep overburden by meshless method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1773-1781. DOI: 10.11779/CJGE20220603
Citation: ZOU Degao, GONG Jin, KONG Xianjing, QU Yongqian, LIU Jingmao, CHEN Kai. Local large deformation between cut-off wall and core wall on deep overburden by meshless method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1773-1781. DOI: 10.11779/CJGE20220603

Local large deformation between cut-off wall and core wall on deep overburden by meshless method

More Information
  • Received Date: May 09, 2022
  • Available Online: March 05, 2023
  • As a significant type of dam on deep overburden, the earth core rockfill dam connects the concrete cut-off wall and soil core wall directly, and the "penetration" phenomenon with local large deformation may exist between cut-off wall and core wall due to the difference in material stiffness. Using an arbitrary Lagrangian-Euler (ALE) framework, an elastic-plastic meshless large deformation method is developed in this research. The meshless method has the benefit of flexible nodal distribution, and the ALE framework shows the advantage of accuracy and stability in large deformation analysis, thus avoiding the precision reduction or re-meshing procedure in the mesh-based large deformation method. The introduced approach is incorporated into the self-developed calculation platform GEODYNA and combined with the finite element method (FEM) and the scale boundary finite element method (SBFEM). Finally, the coupled meshless-FEM-SBFEM applied to an earth core rockfill dam on deep overburden, and combined with the generalized elasto-plastic model, the "penetration" phenomenon with local large deformation is simulated. The results indicate that the large deformation analysis can capture the stress distribution of the cut-off wall and the soil deformation near the joint zone more reasonably, the vertical stress of the cut-off wall calculated by the small deformation analysis is underestimated by about 4.1 MPa (13%), and a shear zone exists between the soil area at the top of the cut-off wall.
  • [1]
    金峰, 周虎, 李玲玉, 等. 堆石混凝土系列技术在西部水电工程中的应用[J]. 水电与抽水蓄能, 2021, 7(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202101005.htm

    JIN Feng, ZHOU Hu, LI Lingyu, et al. Application of innovative technologies based on rock-filled concrete in hydropower projects in western China[J]. Hydropower and Pumped Storage, 2021, 7(1): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202101005.htm
    [2]
    YU X, ZOU D G, KONG X J, YU L. Large-deformation finite element analysis of the interaction between concrete cut-off walls and high-plasticity clay in an earth core dam[J]. Engineering Computations, 2017, 34(4): 1126-1148. doi: 10.1108/EC-04-2016-0118
    [3]
    丁艳辉, 张其光, 张丙印. 高心墙堆石坝防渗墙应力变形特性有限元分析[J]. 水力发电学报, 2013, 32(3): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201303029.htm

    DING Yanhui, ZHANG Qiguang, ZHANG Bingyin. FEM analysis of stress-deformation characteristics of cut-off walls in high core rockfill dam[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 162-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201303029.htm
    [4]
    沈振中, 田振宇, 徐力群, 等. 深覆盖层上土石坝心墙与防渗墙连接型式研究[J]. 岩土工程学报, 2017, 39(5): 939-945. doi: 10.11779/CJGE201705019

    SHEN Zhenzhong, TIAN Zhenyu, XU Liqun, et al. Reasonable connection type for cutoff wall and core wall of earth-rock dams on deep overburden layers[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 939-945. (in Chinese) doi: 10.11779/CJGE201705019
    [5]
    温立峰, 李炎隆, 柴军瑞. 坝基混凝土防渗墙力学性状的统计分析[J]. 水利学报, 2021, 52(2): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202102012.htm

    WEN Lifeng, LI Yanlong, CHAI Junrui. Statistical analysis of mechanical properties of dam foundation concrete cutoff wall[J]. Journal of Hydraulic Engineering, 2021, 52(2): 241-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202102012.htm
    [6]
    WANG D, BIENEN B, NAZEM M, et al. Large deformation finite element analyses in geotechnical engineering[J]. Computers & Geotechnics, 2015, 65(S): 104-114.
    [7]
    AUGARDE C E, LEE S J, LOUKIDIS D. Numerical modelling of large deformation problems in geotechnical engineering: a state-of-the-art review[J]. Soils and Foundations, 2021, 61(6): 1718-1735.
    [8]
    王栋, 年廷凯, 陈煜淼. 边坡稳定有限元分析中的三个问题[J]. 岩土力学, 2007, 28(11): 2309-2313, 2318. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201007045.htm

    WANG Dong, NIAN Tingkai, CHEN Yumiao. Three problems in slope stability analyses with finite element method[J]. Rock and Soil Mechanics, 2007, 28(11): 2309-2313, 2318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201007045.htm
    [9]
    MILLER K, JOLDES G, LANCE D E, et al. Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation[J]. Communications in Numerical Methods in Engineering, 2007, 23(2): 121-134.
    [10]
    BATHE K J, RAMM E, WILSON E L. Finite element formulations for large deformation dynamic analysis[J]. International Journal for Numerical Methods in Engineering, 1975, 9(2): 353-386.
    [11]
    HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327-350.
    [12]
    BENSON D J. Computational methods in Lagrangian and eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2/3): 235-394.
    [13]
    LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013.
    [14]
    黄雨, 郝亮, 野々山人. SPH方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262. http://www.cgejournal.com/cn/article/id/12763

    HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262. (in Chinese) http://www.cgejournal.com/cn/article/id/12763
    [15]
    BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
    [16]
    邹德高, 龚瑾, 孔宪京, 等. 基于无网格界面模拟方法的面板坝防渗体跨尺度分析[J]. 水利学报, 2019, 50(12): 1446-1453, 1466. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912003.htm

    ZOU Degao, GONG Jin, KONG Xianjing, et al. The cross-scale analysis of concrete-face rock-fill dam anti-seepage structure based on the simulation of meshfree interface[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1446-1453, 1466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912003.htm
    [17]
    JIE Y, TANG X W, LUAN M T, et al. Adaptive element free Galerkin method applied to analysis of earthquake induced liquefaction[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(2): 217-224.
    [18]
    CHEN K, ZOU D G, KONG X J, et al. An efficient nonlinear octree SBFEM and its application to complicated geotechnical structures[J]. Computers and Geotechnics, 2018, 96: 226-245.
    [19]
    LIU G R, GU Y T. A local point interpolation method for stress analysis of two-dimensional solids[J]. Structural Engineering and Mechanics, 2001, 11(2): 221-236
    [20]
    TIAN Y H, CASSIDY M J, RANDOLPH M F, et al. A simple implementation of RITSS and its application in large deformation analysis[J]. Computers and Geotechnics, 2014, 56: 160-167.
    [21]
    赵燕兵, 刘海笑. 条形基础嵌入问题的大变形有限元对比分析[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(10): 1055-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201610008.htm

    ZHAO Yanbing, LIU Haixiao. Comparison of large deformation finite element methods for penetration of strip foundations[J]. Journal of Tianjin University (Science and Technology), 2016, 49(10): 1055-1061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201610008.htm
    [22]
    于玉贞, 卞锋. 高土石坝地震动力响应特征弹塑性有限元分析[J]. 世界地震工程, 2010, 26(增刊1): 341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1069.htm

    YU Yuzhen, BIAN Feng. Elasto-plastic FEM analysis of dynamic response of high earth-rockfill dams during earthquake[J]. World Earthquake Engineering, 2010, 26(S1): 341-345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1069.htm
    [23]
    周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报, 2015, 37(8): 1426-1432. doi: 10.11779/CJGE201508010

    ZHOU Mozhen, ZHANG Bingyin, ZHANG Zongliang, et al. Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1426-1432. (in Chinese) doi: 10.11779/CJGE201508010
    [24]
    ZOU D G, XU B, KONG X J, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49(S0): 111-122.
  • Related Articles

    [1]Thermal conductivity evolution of sand-clay mixtures under one-dimensional compression[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240309
    [2]WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
    [3]SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW)[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586-593. DOI: 10.11779/CJGE201504002
    [4]WU Zheng-guang, ZHANG Hua. Experimental study on entrapped air content in quasi-saturated soil subjected to steady ponded water infiltration[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 274-279.
    [5]XU Jin, CAI Zheng-yin, WANG Xu-dong. Semi-analytical numerical analysis for plane strain consolidation of anisotropic soil with compressible constituents[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 89-93.
    [6]ZHU Chunpeng, LIU Hanlong, ZHANG Xiaolu. Laboratory tests on compression characteristics of soil polluted by acid and alkali[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1477-1483.
    [7]GAO Yanbin, ZHU Hehua, YE Guanbao, XU Chao. The investigation of the coefficient of secondary compression Ca in od ometer tests[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 459-463.
    [8]ZHANG Yiping, YU Yanan, ZHANG Tuqiao, ZHANG Xiaohai. A method for evaluating coefficient of consolidation[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(5): 616-618.
  • Cited by

    Periodical cited type(12)

    1. 苟富刚,龚绪龙. 海相软土无侧限抗压强度曲线类型分类及影响因素. 工程地质学报. 2025(01): 20-28 .
    2. 丁发兴,吴霞,张学民,陈雷,葛敬冉,肖杨,宫凤强,陈靖,李梓焜,刘增飞,崔昊,张训杰,吕飞. 材料强度理论研究进展述评. 铁道科学与工程学报. 2024(11): 4555-4587 .
    3. 孟天一,张玉,刘瑾,赵阳,杨倩,丁潇,范特佳. 平面应变条件下基于Lade-Duncan强度准则中主应力条件的土压力及其适用性. 土木与环境工程学报(中英文). 2022(01): 20-27 .
    4. 许萍,邵生俊,房凌云,孙志军. 基于空间面变化的横观各向同性破坏准则研究. 岩土工程学报. 2022(06): 1036-1043 . 本站查看
    5. 许萍,孙志军,邵生俊. 基于空间面变化的各向异性强度变化规律研究. 岩土工程学报. 2021(06): 1118-1124 . 本站查看
    6. 路德春,韩佳月,梁靖宇,田雨,杜修力. 横观各向同性黏土的非正交弹塑性本构模型. 岩石力学与工程学报. 2020(04): 793-803 .
    7. 万征,孟达. 基于t准则的各向异性强度准则及变换应力法. 力学学报. 2020(05): 1519-1537 .
    8. 万征,宋琛琛,孟达. 一种非线性强度准则及转换应力法. 力学学报. 2019(04): 1210-1222 .
    9. 李成. 基于MNLD准则平面应变条件下土体的强度特性描述. 铁道科学与工程学报. 2019(08): 1955-1960 .
    10. 万征,孟达,宋琛琛. 一种适用于岩土的扩展强度及屈服准则. 力学学报. 2019(05): 1545-1556 .
    11. 路德春,张君鸿,梁靖宇,杜修力. 基于特征滑动面的横观各向同性土强度特性研究. 岩土工程学报. 2019(11): 2000-2008 . 本站查看
    12. 万征,宋琛琛,赵晓光. 一种横观各向同性强度准则及变换应力空间. 力学学报. 2018(05): 1168-1184 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return