LIANG Yue, DAI Lei, WEI Qi. Experimental study on seepage erosion based on transparent soil and particle tracing technology[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1133-1140. DOI: 10.11779/CJGE202206018
    Citation: LIANG Yue, DAI Lei, WEI Qi. Experimental study on seepage erosion based on transparent soil and particle tracing technology[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1133-1140. DOI: 10.11779/CJGE202206018

    Experimental study on seepage erosion based on transparent soil and particle tracing technology

    More Information
    • Received Date: May 19, 2021
    • Available Online: September 22, 2022
    • Seepage erosion is one of the main reasons for the instability and failure of hydraulic engineering. In the process of seepage erosion, the fine particles of the soil are gradually lost, and the permeability of the soil is enhanced, which further affects the loss of particles, and eventually even leads to instability and destruction. The seepage erosion is a typical fluid-solid coupling problem. To explore the interaction between fluid movement and particle loss in the process of seepage erosion from the mesoscopic level, by use of the transparent soil technology, a set of seepage erosion test system based on the double light source PIV/PTV is developed. The fused quartz and solution of CaBr2 are used as transparent soil and pore fluid. The movement of pore solution and fine particles in the soil during seepage erosion is observed and recorded. The flow velocity of different sections is compared with the macroscopic flow velocity of the sample, and it is found that when the hydraulic gradient is small, the measured flow velocity of the section is larger than the macroscopic flow velocity of the sample. With the increase of hydraulic gradient, the macroscopic velocity of the sample is gradually larger than the measured velocity of the cross-section, and the closer to the center of the sample, the smaller the difference between the macroscopic velocity and the cross-section velocity. At the same time, the fine particles in the sample gradually transitioned from a stable state to move perpendicular to the plane of the water inlet and outlet, and gradually lose. Compared with the calculated results of the critical hydraulic gradient formula for cohesive soil, it is found that the critical hydraulic gradient obtained through the experiment is slightly lower than the theoretical result. However, the regularity reflected by the experimental results is consistent with the traditional test results. It is shown that the test system has high reliability in the meso-simulation of seepage erosion, and has significance for the study of seepage erosion from the meso-level.
    • [1]
      刘杰. 土的渗透破坏及控制研究[M]. 北京: 中国水利水电出版社, 2014.

      LIU Jie. Piping and Seepage Control of Soil[M]. Beijing: China Water Power Press, 2014. (in Chinese)
      [2]
      李广信. 论土骨架与渗透力[J]. 岩土工程学报, 2016, 38(8): 1522–1528. doi: 10.11779/CJGE201608021

      LI Guang-xin. On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522–1528. (in Chinese) doi: 10.11779/CJGE201608021
      [3]
      LIANG Y, ZENG C, WANG J J, et al. Constant gradient erosion apparatus for appraisal of piping behavior in upward seepage flow[J]. Geotechnical Testing Journal, 2017, 40(4): 630–642.
      [4]
      LIANG Y, YEH T C J, MA C, et al. Experimental investigation of internal erosion behaviours in inclined seepage flow[J]. Hydrological Processes, 2020, 34(26): 5315–5326. doi: 10.1002/hyp.13944
      [5]
      LIANG Y, YEH T C J, WANG J J, et al. Onset of suffusion in upward seepage under isotropic and anisotropic stress conditions[J]. European Journal of Environmental and Civil Engineering, 2019, 23(12): 1520–1534. doi: 10.1080/19648189.2017.1359110
      [6]
      刘杰, 谢定松, 崔亦昊. 江河大堤堤基砂砾石层管涌破坏危害性试验研究[J]. 岩土工程学报, 2009, 31(8): 1188–1191. doi: 10.3321/j.issn:1000-4548.2009.08.006

      LIU Jie, XIE Ding-song, CUI Yi-hao. Destructive tests on piping failure of sandy gravel layer of river dikes[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1188–1191. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.08.006
      [7]
      姚志雄, 周健, 张刚, 等. 颗粒级配对管涌发展的影响试验研究[J]. 水利学报, 2016, 47(2): 200–208. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm

      YAO Zhi-xiong, ZHOU Jian, ZHANG Gang, et al. Experimental study of particle grading impact on piping mechanism[J]. Journal of Hydraulic Engineering, 2016, 47(2): 200–208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201602010.htm
      [8]
      杜建明, 房倩, 刘翔, 等. 透明土物理模拟试验技术现状与趋势[J]. 科学技术与工程, 2021, 21(3): 852–861. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202103002.htm

      DU Jian-ming, FANG Qian, LIU Xiang, et al. The present and development trend of physical simulation experiment technology for transparent soils[J]. Science Technology and Engineering, 2021, 21(3): 852–861. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202103002.htm
      [9]
      CHANEY R C, DEMARS K R, WELKER A L, et al. Applied research using a transparent material with hydraulic properties similar to soil[J]. Geotechnical Testing Journal, 1999, 22(3): 266. doi: 10.1520/GTJ11117J
      [10]
      LIU H L, ZHONG H Y, GU X, et al. Transparent soil model testing on ground settlement induced by parallel tunnels excavation[J]. Journal of Civil and Environmental Engineering, 2021, 43(1): 1–10.
      [11]
      XIANG Y Z, LIU H L, ZHANG W G, et al. Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism[J]. Tunnelling and Underground Space Technology, 2018, 74: 178–184. doi: 10.1016/j.tust.2018.01.020
      [12]
      ZHANG W G, ZHONG H Y, XIANG Y Z, et al. Visualization and digitization of model tunnel deformation via transparent soil testing technique[J]. Underground Space, 2020.
      [13]
      QI C G, ZHENG J H, ZUO D J, et al. Experimental investigation on soil deformation caused by pile buckling in transparent media[J]. Geotechnical Testing Journal, 2018, 41(6): 1050–1062.
      [14]
      ZHENG J H, QI C G, ZHAO X, et al. Experimental simulation on open-ended pipe pile penetration using transparent granule[J]. KSCE Journal of Civil Engineering, 2020, 24(8): 2281–2292. doi: 10.1007/s12205-020-1235-3
      [15]
      周东, 刘汉龙, 仉文岗, 等. 被动桩侧土体位移场的透明土模型试验[J]. 岩土力学, 2019, 40(7): 2686–2694. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm

      ZHOU Dong, LIU Han-long, ZHANG Wen-gang, et al. Transparent soil model test on the displacement field of soil around single passive pile[J]. Rock and Soil Mechanics, 2019, 40(7): 2686–2694. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907022.htm
      [16]
      SUI W H, ZHENG G S. An experimental investigation on slope stability under drawdown conditions using transparent soils[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(3): 977–985. doi: 10.1007/s10064-017-1082-8
      [17]
      王壮, 李驰, 丁选明. 基于透明土技术土岩边坡滑移机理的模型试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 185–188. doi: 10.11779/CJGE2019S2047

      WANG Zhuang, LI Chi, DING Xuan-ming. Model tests on sliding mechanism of soil-rock slopes based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 185–188. (in Chinese) doi: 10.11779/CJGE2019S2047
      [18]
      张建伟, 李贝贝, 樊亚龙, 等. 基于透明土模型试验的斜坡加载土体破坏特征研究[J]. 河南大学学报(自然科学版), 2020, 50(6): 717–723. https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR202006010.htm

      ZHANG Jian-wei, LI Bei-bei, FAN Ya-long, et al. Study on loading failure characteristics of slope based on transparent soil model test[J]. Journal of Henan University (Natural Science), 2020, 50(6): 717–723. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDZR202006010.htm
      [19]
      梁越, 陈鹏飞, 林加定, 等. 基于透明土技术的多孔介质孔隙流动特性研究[J]. 岩土工程学报, 2019, 41(7): 1361–1366. doi: 10.11779/CJGE201907022

      LIANG Yue, CHEN Peng-fei, LIN Jia-ding, et al. Study on pore flow characteristics of porous media based on transparent soil technology[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1361–1366. (in Chinese) doi: 10.11779/CJGE201907022
      [20]
      武亚军, 李俊鹏, 姜海波, 等. 不同颗粒级配透明黏土的固结与渗透特性[J]. 东北大学学报(自然科学版), 2020, 41(6): 875–880. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202006020.htm

      WU Ya-jun, LI Jun-peng, JIANG Hai-bo, et al. Consolidation and permeability characteristics of transparent clay with different grain composition[J]. Journal of Northeastern University (Natural Science), 2020, 41(6): 875–880. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202006020.htm
      [21]
      由长福, 祁海鹰, 徐旭常, 等. 采用PTV技术研究循环流化床内气固两相流动[J]. 应用力学学报, 2004, 21(4): 1–5, 165. doi: 10.3969/j.issn.1000-4939.2004.04.001

      YOU Chang-fu, QI Hai-ying, XU Xu-chang, et al. Investigation to gas-particle two-phase flow in CFB using PTV technology[J]. Chinese Journal of Applied Mechanics, 2004, 21(4): 1–5, 165. (in Chinese) doi: 10.3969/j.issn.1000-4939.2004.04.001
      [22]
      杨福胜, 张早校, 王斯民, 等. 粒子追踪测速(PTV)技术及其在多相流测试中的应用[J]. 流体机械, 2014, 42(2): 37–42. doi: 10.3969/j.issn.1005-0329.2014.02.009

      YANG Fu-sheng, ZHANG Zao-xiao, WANG Si-min, et al. Particle tracking velocimetry and its application to the measurement of multiphase flow-A review[J]. Fluid Machinery, 2014, 42(2): 37–42. (in Chinese) doi: 10.3969/j.issn.1005-0329.2014.02.009
      [23]
      郑金海, 丁星宇, 管大为, 等. 循环荷载作用下海上风机单桩基础周围砂土沉降与对流特性[J]. 河海大学学报(自然科学版), 2020, 48(6): 552–561. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202006011.htm

      ZHENG Jin-hai, DING Xing-yu, GUAN Da-wei, et al. Characteristics of soil subsidence and convective motion around offshore windfarm monopile foundations subjected to long-term cyclic loading [J]. Journal of Hohai University(Natural Sciences), 2020, 48(6): 552–561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202006011.htm
      [24]
      ZHANG W, KANG J H, LEE S J. Visualization of saltating sand particle movement near a flat ground surface[J]. Journal of Visualization, 2007, 10(1): 39–46. doi: 10.1007/BF03181802
      [25]
      WANG Y, WANG D W, WANG L, et al. Measurement of sand creep on a flat sand bed using a high-speed digital camera[J]. Sedimentology, 2009, 56(6): 1705–1712.
      [26]
      LELOUVETEL J, NAKAGAWA M, SATO Y, et al. Effect of bubbles on turbulent kinetic energy transport in downward flow measured by time-resolved PTV[J]. Experiments in Fluids, 2011, 50(4): 813–823.
      [27]
      周云龙, 李洪伟, 范振儒. 基于PTV法对油气水三相流流场的测定[J]. 化工学报, 2008, 59(10): 2505–2510. doi: 10.3321/j.issn:0438-1157.2008.10.013

      ZHOU Yun-long, LI Hong-wei, FAN Zhen-ru. Measurement of flow field of oil-air-water three-phase based on PTV[J]. Journal of Chemical Industry and Engineering, 2008, 59(10): 2505–2510. (in Chinese) doi: 10.3321/j.issn:0438-1157.2008.10.013
      [28]
      孔纲强, 孙学谨, 刘汉龙, 等. 孔隙液体对透明土渗透特性影响对比试验[J]. 水利学报, 2017, 48(11): 1303–1310. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm

      KONG Gang-qiang, SUN Xue-jin, LIU Han-long, et al. Contrast experiments on permeability of transparent soil influenced by pore fluids[J]. Journal of Hydraulic Engineering, 2017, 48(11): 1303–1310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201711005.htm
      [29]
      张仪萍, 李亮, 王思照. 透明土中孔隙流体的实验研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1828–1834. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201410017.htm

      ZHANG Yi-ping, LI Liang, WANG Si-zhao. Experimental study on pore fluid for forming transparent soil[J]. Journal of Zhejiang University(Engineering Science), 2014, 48(10): 1828–1834. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201410017.htm
      [30]
      孔纲强, 张鑫蕊, 许文傧, 等. 透明土中孔隙液体折射率、黏度系数与稳定性[J]. 水利水电科技进展, 2017, 37(4): 25–29. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201704005.htm

      KONG Gang-qiang, ZHANG Xin-rui, XU Wen-bin, et al. Refractive index, viscosity coefficient and stability of pore fluids in transparent soil[J]. Advances in Science and Technology of Water Resources, 2017, 37(4): 25–29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201704005.htm
      [31]
      齐昌广, 左殿军, 王新泉. 基于透明土和图像测量的试验模拟技术及应用[M]. 北京: 中国建筑工业出版社, 2017.

      QI Chang-guang, ZUO Dian-jun, WANG Xin-quan. Experimental Simulation Technology Based on Transparent Soil and Image Measurement and Its Application[M]. Beijing: China Architecture and Building Press, 2017. (in Chinese)
      [32]
      沙金煊. 多孔介质中的管涌研究[J]. 水利水运科学研究, 1981(3): 89–93. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198103006.htm

      SHA Jin-xuan. Research on piping in porous media[J]. Journal of Nanjing Hydraulic Research Institute, 1981(3): 89–93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198103006.htm
      [33]
      许联锋, 陈刚, 李建中, 等. 粒子图像测速技术研究进展[J]. 力学进展, 2003, 33(4): 533–540. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200304009.htm

      XU Lian-feng, CHEN Gang, LI Jian-zhong, et al. Reseach progress of particle image velocimetry[J]. Advances in Mechanics, 2003, 33(004): 533–540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ200304009.htm
      [34]
      王灿星, 林建忠, 山本富士夫. 二维PIV图像处理算法[J]. 水动力学研究与进展(A辑), 2001, 16(4): 399–404. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200104000.htm

      WANG Can-xing, LIN Jian-zhong, Yamamoto Fujio. An algorithm for two-dimensional PIV images[J]. Journal of Hydrodynamics, 2001, 16(4): 399–404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ200104000.htm
      [35]
      胡涛. PTV匹配算法的对比分析[D]. 北京: 清华大学, 2010.

      HU Tao. Comparison of Particle Matching Algorithms for PTV[D]. Beijing: Tsinghua University, 2010. (in Chinese)
      [36]
      BAEK S J, LEE S J. A new two-frame particle tracking algorithm using match probability[J]. Experiments in Fluids, 1996, 22(1): 23–32.
      [37]
      靳斌, 杨冠玲, 何振江, 等. 一种利用示踪粒子群体运动特征的PTV方法[J]. 光学技术, 2000, 26(1): 16–18. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200001004.htm

      JIN Bin, YANG Guan-ling, HE Zhen-jiang, et al. A fluid field velocimetry method basing on tracers' group property[J]. Optical Technology, 2000, 26(1): 16–18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200001004.htm
    • Related Articles

      [1]Study on the evolution of critical state and constitutive modeling for calcareous sand under anisotropic consolidation paths[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20241198
      [2]Thermal conductivity evolution of sand-clay mixtures under one-dimensional compression[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240309
      [3]CHEN Rong, WU Zhiyong, HAO Dongxue, GAO Yucong. Evolution rules and effects of particle breakage for quartz sand in triaxial shear tests under high pressures[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1713-1722. DOI: 10.11779/CJGE20220647
      [4]WANG Wei-guang, YAO Zhi-hua, LI Wan, ZHANG Jian-hua. Compression characteristics and particle crushing behavior of coral sand–quartz sand mixture under confined high pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 6-11. DOI: 10.11779/CJGE2022S1002
      [5]WANG Gang, YANG Jun-jie, WANG Zhao-nan. Evolution of critical state of calcareous sand during particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1511-1517. DOI: 10.11779/CJGE202108016
      [6]GAO Yan-bin, LIU Jia-dan. One-dimensional stress relaxation of cohesive soils and its relationship with secondary compression[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 49-52. DOI: 10.11779/CJGE2019S2013
      [7]RAO Chun-yi, ZHU Jian-feng, PAN Bin-jie, LIU Hao-xu, ZHOU Zhi-jun. One-dimensional compression model for solidified silt based on theory of disturbed state concept[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 173-176. DOI: 10.11779/CJGE2019S1044
      [8]LIU Xin, LI Sa, LIU Xiao-long, CHEN Wen-wei. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. DOI: 10.11779/CJGE201909024
      [9]NIE Qing, WEI Wei, LUO Kai-tai, LIU En-long. Confined compression features and mathematical modeling of artificially structured soils with initial stress-induced anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 774-778.
      [10]ZHANG Jiru, ZHU Jie, HUANG Wenjing. Crushing and fractal behaviors of quartz sand-gravel particles under confined compression[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 783-789.
    • Cited by

      Periodical cited type(12)

      1. 谢永晟,杨果岳,王阳,杨少光. 剪切速率对水泥胶结钙质砂强度及变形的影响. 湘潭大学学报(自然科学版). 2024(01): 83-91 .
      2. 陈军浩,张艳娥,王刚,王恒. 不同固结路径下钙质砂固结排水强度性状研究. 岩土力学. 2024(08): 2290-2298 .
      3. 肖汉清,赵斌,熊力,陈令,秦朗,刘杰. 往复荷载作用下滨海滩涂软基长期性能劣化机制试验研究. 河南科学. 2024(09): 1325-1333 .
      4. 杨振杰,张凌凯. 北疆白砂岩力学特性及其微观机制试验研究. 水利水电科技进展. 2024(05): 94-102 .
      5. 刘鑫,李飒,尹福顺,姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究. 岩土工程学报. 2023(03): 590-598 . 本站查看
      6. 王欲敏,赵梦珍,梁旭之,李菁若,周启伟. 西南地区路用石灰岩粗集料矿物组成和物理力学性质的关联性分析. 土木工程学报. 2023(06): 136-144 .
      7. 蒋超,陈杰,蒋昌波,姚震,梁海,伍志元. 柱状珊瑚砂静水沉降试验研究. 海洋学报. 2023(04): 57-67 .
      8. 李钒,陈远中,廖洁,夏冰,樊科伟. 颗粒形状对钙质砂最终级配影响的试验研究. 河海大学学报(自然科学版). 2023(04): 41-45+71 .
      9. 施勇,贾献林,吕国儿,李宝建. 钙质砂最大最小孔隙比的确定及其影响因素分析. 地基处理. 2023(04): 293-298 .
      10. 沈扬,马英豪,芮笑曦. 波浪荷载作用下饱和钙质砂孔压特性及累积损失能量试验研究. 岩土力学. 2023(08): 2195-2204 .
      11. 白思凯,杨超,刘建宏. 基于钙质砂形态参数的神经网络模式识别研究. 工业建筑. 2023(S1): 657-660+599 .
      12. 李洪成,曾荣,杨天圆,牛智有. 玉米籽粒冲击破碎特性试验研究. 农业工程学报. 2022(07): 29-37 .

      Other cited types(25)

    Catalog

      Article views (311) PDF downloads (237) Cited by(37)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return