Citation: | MU Qing-yi, ZHENG Jian-guo, YU Yong-tang, MENG Long-long, LIU Fen-liang. In-situ evaluation of collapsible loess through time-domain reflectometry[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1115-1123. DOI: 10.11779/CJGE202206016 |
[1] |
陈正汉. 非饱和土与特殊土力学的基本理论研究[J]. 岩土工程学报, 2014, 36(2): 201–272. doi: 10.11779/CJGE201402001
CHEN Zheng-han. On basic theories of unsaturated soils and special soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(2): 201–272. (in Chinese) doi: 10.11779/CJGE201402001
|
[2] |
MU Q Y, ZHOU C, NG C W W. Compression and wetting induced volumetric behavior of loess: macro and micro-investigations[J]. Transportation Geotechnics, 2020, 23: 100345. doi: 10.1016/j.trgeo.2020.100345
|
[3] |
土工试验方法标准: GB/T 50123—2019[S]. 2019.
Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
|
[4] |
陈存礼, 褚峰, 李雷雷, 等. 侧限压缩条件下非饱和原状黄土的土水特征[J]. 岩石力学与工程学报, 2011, 30(3): 610-615. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103022.htm
CHEN Cun-li, CHU Feng, LI Lei-lei, et al. Soil-water characteristics of unsaturated undisturbed loess under confined compression condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 610–615. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201103022.htm
|
[5] |
穆青翼, 党影杰, 董琪, 等. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496–1504. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm
MU Qing-yi, DANG Ying-jie, DONG Qi, et al. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496–1504. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm
|
[6] |
邵生俊, 杨春鸣, 马秀婷, 等. 黄土的独立物性指标及其与湿陷性参数的相关性分析[J]. 岩土力学, 2013, 34(增刊2): 27–34. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2005.htm
SHAO Sheng-jun, YANG Chun-ming, MA Xiu-ting, et al. Correlation analysis of collapsible parameters and independent physical indices of loess[J]. Rock and Soil Mechanics, 2013, 34(S2): 27–34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2013S2005.htm
|
[7] |
HOLTZ W G, HILLF J W. Settlement of soil foundations due to saturation[C]//Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. 1961. Paris.
|
[8] |
GIBBS H J, BARA J P. Predicting surface subsidence from basic soil tests[J]. Special Technical Publication, ASTM, 1962, 322: 231–247.
|
[9] |
叶为民, 崔玉军, 黄雨, 等. 黄土的湿陷性及其评价准则[J]. 岩石力学与工程学报, 2006, 25(3): 550–556. doi: 10.3321/j.issn:1000-6915.2006.03.018
YE Wei-min, CUI Yun-jun, HUANG Yu, et al. Collapsibility of loess and its discrimination criteria[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 550–556. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.03.018
|
[10] |
BASMA A A, TUNCER E R. Evaluation and control of collapsible soils[J]. Journal of Geotechnical Engineering, 1992, 118(10): 1491–1504. doi: 10.1061/(ASCE)0733-9410(1992)118:10(1491)
|
[11] |
TOPP G C, DAVIS J L, ANNAN A P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3): 574–582. doi: 10.1029/WR016i003p00574
|
[12] |
BHUYAN H, SCHEUERMANN A, BODIN D, et al. Soil moisture and density monitoring methodology using TDR measurements[J]. International Journal of Pavement Engineering, 2020, 21(10): 1263–1274. doi: 10.1080/10298436.2018.1537491
|
[13] |
MU Q Y, ZHAN L T, LIN C P, et al. Non-invasive time domain reflectometry probe for transient measurement of water retention curves in structured soils[J]. Engineering Geology, 2020, 264: 105335. doi: 10.1016/j.enggeo.2019.105335
|
[14] |
ROTH K, SCHULIN R, FLÜHLER H, et al. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach[J]. Water Resources Research, 1990, 26(10): 2267–2273.
|
[15] |
SIDDIQUI S I, DRNEVICH V P, DESCHAMPS R J. Time domain reflectometry development for use in geotechnical engineering[J]. Geotechnical Testing Journal, 2000, 23(1): 9–20. doi: 10.1520/GTJ11119J
|
[16] |
YU X, DRNEVICH V P. Soil water content and dry density by time domain reflectometry[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(9): 922–934. doi: 10.1061/(ASCE)1090-0241(2004)130:9(922)
|
[17] |
赵云, 凌道盛, 王云龙, 等. 改进一步法模型及TDR自适应方法研究[J]. 岩土工程学报, 2016, 38(5): 818–827. doi: 10.11779/CJGE201605007
ZHAO Yun, LING Dao-sheng, WANG Yun-long, et al. Modified one-step method and its adaptive system of TDR[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 818–827. (in Chinese) doi: 10.11779/CJGE201605007
|
[18] |
CURIONI G, CHAPMAN D N, ROYAL A C D, et al. Time domain reflectometry (TDR) potential for soil condition monitoring of geotechnical assets[J]. Canadian Geotechnical Journal, 2019, 56(7): 942–955. doi: 10.1139/cgj-2017-0618
|
[19] |
湿陷性黄土地区建筑标准: GB50025—2018[S]. 2018.
Standard for Building Construction in Collapsible Loess Regions: GB50025—2018[S]. 2018. (in Chinese)
|
[20] |
土的工程分类标准: GB/T50145—2007[S]. 2017.
Standard for Engineering Classification of Soil: GB/T50145—2007[S]. 2017. (in Chinese)
|
[21] |
JUNG S, DRNEVICH V P, ABOU NAJM M R. Temperature corrections for time domain reflectometry parameters[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(5): 671–683. doi: 10.1061/(ASCE)GT.1943-5606.0000794
|
[22] |
ROTHE A, WEIS W, KREUTZER K, et al. Changes in soil structure caused by the installation of time domain reflectometry probes and their influence on the measurement of soil moisture[J]. Water Resources Research, 1997, 33(7): 1585–1593. doi: 10.1029/97WR00677
|
[23] |
詹良通, 穆青翼, 陈云敏. 三针式TDR探头测试区域范围分析及试验验证[J]. 岩土工程学报, 2014, 36(4): 757–762. doi: 10.11779/CJGE201404022
ZHAN Liang-tong, MU Qing-yi, CHEN Yun-min. Analysis and experimental verification of sampling area of three-rod time-domain reflectometry probe[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 757–762. (in Chinese) doi: 10.11779/CJGE201404022
|
[24] |
LI P, LI T L, VANAPALLI S K. Influence of environmental factors on the wetting front depth: a case study in the Loess Plateau[J]. Engineering Geology, 2016, 214: 1–10. doi: 10.1016/j.enggeo.2016.09.008
|
[25] |
FEDA J. Structural stability of subsident loess soil from Praha-Dejvice[J]. Engineering Geology, 1966, 1(3): 201–219. doi: 10.1016/0013-7952(66)90032-9
|