Citation: | ZHAO Chang, HE Xiang, HU Ran, LIU Han-long, XIE Qiang, WANG Yu-ze, WU Huan-ran, XIAO Yang. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. DOI: 10.11779/CJGE202206014 |
[1] |
PACHECO T F, LABRINCHA J A, DIAMANTI M V, et al. Biotechnologies and Biomimetics for Civil Engineering[M]. Cham: Springer International Publishing, 2015.
|
[2] |
刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
|
[3] |
何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643–653. doi: 10.11779/CJGE201604008
HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643–653. (in Chinese) doi: 10.11779/CJGE201604008
|
[4] |
XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
|
[5] |
桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269–278. doi: 10.11779/CJGE202002008
GUI Yue, WU Cheng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269–278. (in Chinese) doi: 10.11779/CJGE202002008
|
[6] |
MA G L, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, 2021, 58(7): 969–981. doi: 10.1139/cgj-2020-0045
|
[7] |
XIAO Y, ZHANG Z C, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. doi: 10.1061/(ASCE)GT.1943-5606.0002666
|
[8] |
程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486–1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
CHENG Xiao-hui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486–1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
|
[9] |
XIAO Y, TANG Y, MA G, et al. Thermal conductivity of biocemented graded sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(10): 04021106. doi: 10.1061/(ASCE)GT.1943-5606.0002621
|
[10] |
PAASSEN L Van. Biogrout Ground Improvement by Microbially Induced Carbonate Precipitation[D]. Rijswijk Netherland: Delft University of Technology, 2009.
|
[11] |
赵常, 张瑾璇, 张宇, 等. 微生物加固土多尺度研究进展[J]. 北京工业大学学报, 2021, 47(7): 792–801. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107014.htm
ZHAO Chang, ZHANG Jin-xuan, ZHANG Yu, et al. Research Progress on Multi-scale Biocemented Soil[J]. Journal of Beijing University of Technology, 2021, 47(7): 792–801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107014.htm
|
[12] |
崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(增刊2): 397–402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm
CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 397–402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm
|
[13] |
彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048–1055. doi: 10.11779/CJGE201806010
PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048–1055. (in Chinese) doi: 10.11779/CJGE201806010
|
[14] |
XIAO Y, STUEDLEIN A W, RAN J Y, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016. doi: 10.1061/(ASCE)GT.1943-5606.0002165
|
[15] |
XIAO Y, STUEDLEIN A W, PAN Z Y, et al. Toe-bearing capacity of precast concrete piles through biogrouting improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 06020026. doi: 10.1061/(ASCE)GT.1943-5606.0002404
|
[16] |
张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023–1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023–1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
|
[17] |
刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26–31. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
LIU Han-long, MA Guo-liang, XIAO Yang et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Chinese Ground Improvement, 2019, 1(1): 26–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
|
[18] |
XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
|
[19] |
谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675–682. doi: 10.11779/CJGE201904010
XIE Yue-han, TANG Chao-sheng, YIN Li-yang et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675–682. (in Chinese) doi: 10.11779/CJGE201904010
|
[20] |
马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290–299. doi: 10.11779/CJGE202102009
MA Guo-liang, HE Xiang, LU Hua-ming et al. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2020, 43(2): 290–299. (in Chinese) doi: 10.11779/CJGE202102009
|
[21] |
WANG Y, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Géotechnique, 2019, 69(12): 1086–1094. doi: 10.1680/jgeot.18.P.031
|
[22] |
WANG Y, SOGA K, DEJONG J T, et al. Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: particle-scale experimental study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(6): 04021036. doi: 10.1061/(ASCE)GT.1943-5606.0002509
|
[23] |
何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005–1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
HE Xiang, MA Guo-liang, WANG Yang et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005–1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
|
[24] |
EBIGBO A, PHILLIPS A, GERLACH R, et al. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns[J]. Water Resources Research, 2012, 48(7): W07519.
|
[25] |
MINTO J M, LUNN R J, EL MOUNTASSIR G. Development of a reactive transport model for field‐scale simulation of microbially induced carbonate precipitation[J]. Water Resources Research, 2019, 55(8): 7229–7245. doi: 10.1029/2019WR025153
|
[26] |
NASSAR M K, GURUNG D, BASTANI M, et al. Large-scale experiments in microbially induced calcite precipitation (MICP): reactive transport model development and prediction[J]. Water Resources Research, 2018, 54(1): 480–500. doi: 10.1002/2017WR021488
|
[27] |
BEAR J. Dynamics of Fluids in Porous Media[M]. New York: American Elsevier, 1972.
|
[28] |
BRADFORD S A, WANG Y S, KIM H, et al. Modeling microorganism transport and survival in the subsurface[J]. Journal of Environmental Quality, 2014, 43(2): 421–440. doi: 10.2134/jeq2013.05.0212
|
[29] |
NING Z G, LI R, LIAN H S, et al. Effects of flow-interruption on the bacteria transport behavior in porous media[J]. Journal of Hydrology, 2021, 595: 125677. doi: 10.1016/j.jhydrol.2020.125677
|
[30] |
BRADFORD S A, BETTAHAR M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2006, 82(1): 99–117.
|
[31] |
WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Morduch University, 2004.
|
[32] |
LAUCHNOR E G, TOPP D M, PARKER A E, et al. Whole cell kinetics of ureolysis by sporosarcina pasteurii[J]. Journal of Applied Microbiology, 2015, 118(6): 1321–1332. doi: 10.1111/jam.12804
|
[33] |
WIJNGAARDEN W K, VERMOLEN F J, MEURS G A M, et al. A mathematical model for biogrout[J]. Computational Geosciences, 2013, 17(3): 463–478. doi: 10.1007/s10596-012-9316-0
|
[34] |
HAYNES W M. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2014.
|
[35] |
WANG X R, NACKENHORST U. A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation[J]. Advances in Water Resources, 2020, 140: 103563. doi: 10.1016/j.advwatres.2020.103563
|
[36] |
BARKOUKI T H, MARTINEZ B C, MORTENSEN B M, et al. Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments[J]. Transport in Porous Media, 2011, 90(1): 23–39. doi: 10.1007/s11242-011-9804-z
|
[37] |
DUPRAZ S, PARMENTIER M, MÉNEZ B, et al. Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers[J]. Chemical Geology, 2009, 265(1): 44–53.
|
[38] |
CUTHBERT M O, RILEY M S, HANDLEY-SIDHU S, et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation[J]. Ecological Engineering, 2012, 41: 32–40. doi: 10.1016/j.ecoleng.2012.01.008
|
[39] |
QIN C Z, HASSANIZADEH S M, EBIGBO A. Pore-scale network modeling of microbially induced calcium carbonate precipitation: insight into scale dependence of biogeochemical reaction rates[J]. Water Resources Research, 2016, 52(11): 8794–8810. doi: 10.1002/2016WR019128
|
[40] |
HOMMEL J, EBIGBO A, GERLACH R, et al. Finding a balance between accuracy and effort for modeling biomineralization[J]. Energy Procedia, 2016, 97: 379–386. doi: 10.1016/j.egypro.2016.10.028
|