• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Chang, HE Xiang, HU Ran, LIU Han-long, XIE Qiang, WANG Yu-ze, WU Huan-ran, XIAO Yang. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. DOI: 10.11779/CJGE202206014
Citation: ZHAO Chang, HE Xiang, HU Ran, LIU Han-long, XIE Qiang, WANG Yu-ze, WU Huan-ran, XIAO Yang. Kinetic theory and numerical simulation of biomineralization[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1096-1105. DOI: 10.11779/CJGE202206014

Kinetic theory and numerical simulation of biomineralization

More Information
  • Received Date: August 05, 2021
  • Available Online: September 22, 2022
  • The biomineralization technology that becomes an emerging research topic has attracted wide attentions in recent years. However, it is hard to quantify the reaction process of biomineralization on temporal and spatial scales due to its complicated reactive mechanisms. Based on the principle of microbially induced carbonate precipitation, considering the adsorption and straining of bacteria, adopting the kinetic model for urea hydrolysis and precipitation, a reactive kinetic theory of biomineralization is investigated. Finally, based on the biomineralization experiments on a pore scale, a finite element software is adopted for multi-physics coupling. The results show that the adsorption and straining effects lead to the differences in distribution of bacteria, and then further influence the spatial distribution of calcium carbonate. The transverse distribution of CaCO3 content during the initial mixing stage is not uniform, while the longitudinal distribution shows an increasing trend. The permeability shows an 80% reduction after 40 hours of reaction. The rate of CaCO3 precipitation is limited by the rate of urea hydrolysis when calcium ions are abundant. The decay rate of bacteria due to CaCO3 encapsulation is the combined effect of amounts of adsorbed bacteria and precipitation rate. The model can reflect the evolution of biomineralization-induced precipitation during reaction process, further enrich the theory of biomineralization reaction. This study is expected to provide reference in predicting the effect for the field-scale geotechnical engineering.
  • [1]
    PACHECO T F, LABRINCHA J A, DIAMANTI M V, et al. Biotechnologies and Biomimetics for Civil Engineering[M]. Cham: Springer International Publishing, 2015.
    [2]
    刘汉龙, 肖鹏, 肖杨, 等. 微生物岩土技术及其应用研究新进展[J]. 土木与环境工程学报(中英文), 2019, 41(1): 1–14. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm

    LIU Han-long, XIAO Peng, XIAO Yang, et al. State-of-the-art review of biogeotechnology and its engineering applications[J]. Journal of Civil and Environmental Engineering, 2019, 41(1): 1–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201901001.htm
    [3]
    何稼, 楚剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643–653. doi: 10.11779/CJGE201604008

    HE Jia, CHU Jian, LIU Han-long, et al. Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643–653. (in Chinese) doi: 10.11779/CJGE201604008
    [4]
    XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123. doi: 10.1061/(ASCE)GT.1943-5606.0002384
    [5]
    桂跃, 吴承坤, 刘颖伸, 等. 利用微生物技术改良泥炭土工程性质试验研究[J]. 岩土工程学报, 2020, 42(2): 269–278. doi: 10.11779/CJGE202002008

    GUI Yue, WU Cheng-kun, LIU Ying-shen, et al. Improving engineering properties of peaty soil by biogeotechnology[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 269–278. (in Chinese) doi: 10.11779/CJGE202002008
    [6]
    MA G L, HE X, JIANG X, et al. Strength and permeability of bentonite-assisted biocemented coarse sand[J]. Canadian Geotechnical Journal, 2021, 58(7): 969–981. doi: 10.1139/cgj-2020-0045
    [7]
    XIAO Y, ZHANG Z C, STUEDLEIN A W, et al. Liquefaction modeling for biocemented calcareous sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12): 04021149. doi: 10.1061/(ASCE)GT.1943-5606.0002666
    [8]
    程晓辉, 麻强, 杨钻, 等. 微生物灌浆加固液化砂土地基的动力反应研究[J]. 岩土工程学报, 2013, 35(8): 1486–1495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm

    CHENG Xiao-hui, MA Qiang, YANG Zuan, et al. Dynamic response of liquefiable sand foundation improved by bio-grouting[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1486–1495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308017.htm
    [9]
    XIAO Y, TANG Y, MA G, et al. Thermal conductivity of biocemented graded sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(10): 04021106. doi: 10.1061/(ASCE)GT.1943-5606.0002621
    [10]
    PAASSEN L Van. Biogrout Ground Improvement by Microbially Induced Carbonate Precipitation[D]. Rijswijk Netherland: Delft University of Technology, 2009.
    [11]
    赵常, 张瑾璇, 张宇, 等. 微生物加固土多尺度研究进展[J]. 北京工业大学学报, 2021, 47(7): 792–801. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107014.htm

    ZHAO Chang, ZHANG Jin-xuan, ZHANG Yu, et al. Research Progress on Multi-scale Biocemented Soil[J]. Journal of Beijing University of Technology, 2021, 47(7): 792–801. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202107014.htm
    [12]
    崔明娟, 郑俊杰, 赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. 岩土力学, 2016, 37(增刊2): 397–402. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm

    CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang. Experimental study of effect of particle size on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2016, 37(S2): 397–402. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2051.htm
    [13]
    彭劼, 冯清鹏, 孙益成. 温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J]. 岩土工程学报, 2018, 40(6): 1048–1055. doi: 10.11779/CJGE201806010

    PENG Jie, FENG Qing-peng, SUN Yi-cheng. Influences of temperatures on MICP-treated soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1048–1055. (in Chinese) doi: 10.11779/CJGE201806010
    [14]
    XIAO Y, STUEDLEIN A W, RAN J Y, et al. Effect of particle shape on strength and stiffness of biocemented glass beads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 06019016. doi: 10.1061/(ASCE)GT.1943-5606.0002165
    [15]
    XIAO Y, STUEDLEIN A W, PAN Z Y, et al. Toe-bearing capacity of precast concrete piles through biogrouting improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(12): 06020026. doi: 10.1061/(ASCE)GT.1943-5606.0002404
    [16]
    张鑫磊, 陈育民, 张喆, 等. 微生物灌浆加固可液化钙质砂地基的振动台试验研究[J]. 岩土工程学报, 2020, 42(6): 1023–1031. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm

    ZHANG Xin-lei, CHEN Yu-min, ZHANG Zhe, et al. Performance evaluation of liquefaction resistance of a MICP-treated calcareous sandy foundation using shake table tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1023–1031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006007.htm
    [17]
    刘汉龙, 马国梁, 肖杨, 等. 微生物加固岛礁地基现场试验研究[J]. 地基处理, 2019, 1(1): 26–31. https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm

    LIU Han-long, MA Guo-liang, XIAO Yang et al. In situ experimental research on calcareous foundation stabilization using MICP technique on the reclaimed coral reef islands[J]. Chinese Ground Improvement, 2019, 1(1): 26–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJCL201901007.htm
    [18]
    XIAO Y, HE X, EVANS T M, et al. Unconfined compressive and splitting tensile strength of basalt fiber–reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019048. doi: 10.1061/(ASCE)GT.1943-5606.0002108
    [19]
    谢约翰, 唐朝生, 尹黎阳, 等. 纤维加筋微生物固化砂土的力学特性[J]. 岩土工程学报, 2019, 41(4): 675–682. doi: 10.11779/CJGE201904010

    XIE Yue-han, TANG Chao-sheng, YIN Li-yang et al. Mechanical behavior of microbial-induced calcite precipitation (MICP)-treated soil with fiber reinforcement[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 675–682. (in Chinese) doi: 10.11779/CJGE201904010
    [20]
    马国梁, 何想, 路桦铭, 等. 高岭土微粒固载成核微生物固化粗砂强度[J]. 岩土工程学报, 2021, 43(2): 290–299. doi: 10.11779/CJGE202102009

    MA Guo-liang, HE Xiang, LU Hua-ming et al. Strength of biocemented coarse sand with kaolin micro-particle improved nucleation[J]. Chinese Journal of Geotechnical Engineering, 2020, 43(2): 290–299. (in Chinese) doi: 10.11779/CJGE202102009
    [21]
    WANG Y, SOGA K, DEJONG J T, et al. A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP)[J]. Géotechnique, 2019, 69(12): 1086–1094. doi: 10.1680/jgeot.18.P.031
    [22]
    WANG Y, SOGA K, DEJONG J T, et al. Effects of bacterial density on growth rate and characteristics of microbial-induced CaCO3 precipitates: particle-scale experimental study[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(6): 04021036. doi: 10.1061/(ASCE)GT.1943-5606.0002509
    [23]
    何想, 马国梁, 汪杨, 等. 基于微流控芯片技术的微生物加固可视化研究[J]. 岩土工程学报, 2020, 42(6): 1005–1012. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm

    HE Xiang, MA Guo-liang, WANG Yang et al. Visualization investigation of bio-cementation process based on microfluidics[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1005–1012. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006005.htm
    [24]
    EBIGBO A, PHILLIPS A, GERLACH R, et al. Darcy-scale modeling of microbially induced carbonate mineral precipitation in sand columns[J]. Water Resources Research, 2012, 48(7): W07519.
    [25]
    MINTO J M, LUNN R J, EL MOUNTASSIR G. Development of a reactive transport model for field‐scale simulation of microbially induced carbonate precipitation[J]. Water Resources Research, 2019, 55(8): 7229–7245. doi: 10.1029/2019WR025153
    [26]
    NASSAR M K, GURUNG D, BASTANI M, et al. Large-scale experiments in microbially induced calcite precipitation (MICP): reactive transport model development and prediction[J]. Water Resources Research, 2018, 54(1): 480–500. doi: 10.1002/2017WR021488
    [27]
    BEAR J. Dynamics of Fluids in Porous Media[M]. New York: American Elsevier, 1972.
    [28]
    BRADFORD S A, WANG Y S, KIM H, et al. Modeling microorganism transport and survival in the subsurface[J]. Journal of Environmental Quality, 2014, 43(2): 421–440. doi: 10.2134/jeq2013.05.0212
    [29]
    NING Z G, LI R, LIAN H S, et al. Effects of flow-interruption on the bacteria transport behavior in porous media[J]. Journal of Hydrology, 2021, 595: 125677. doi: 10.1016/j.jhydrol.2020.125677
    [30]
    BRADFORD S A, BETTAHAR M. Concentration dependent transport of colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2006, 82(1): 99–117.
    [31]
    WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Perth: Morduch University, 2004.
    [32]
    LAUCHNOR E G, TOPP D M, PARKER A E, et al. Whole cell kinetics of ureolysis by sporosarcina pasteurii[J]. Journal of Applied Microbiology, 2015, 118(6): 1321–1332. doi: 10.1111/jam.12804
    [33]
    WIJNGAARDEN W K, VERMOLEN F J, MEURS G A M, et al. A mathematical model for biogrout[J]. Computational Geosciences, 2013, 17(3): 463–478. doi: 10.1007/s10596-012-9316-0
    [34]
    HAYNES W M. CRC Handbook of Chemistry and Physics[M]. Boca Raton: CRC Press, 2014.
    [35]
    WANG X R, NACKENHORST U. A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation[J]. Advances in Water Resources, 2020, 140: 103563. doi: 10.1016/j.advwatres.2020.103563
    [36]
    BARKOUKI T H, MARTINEZ B C, MORTENSEN B M, et al. Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments[J]. Transport in Porous Media, 2011, 90(1): 23–39. doi: 10.1007/s11242-011-9804-z
    [37]
    DUPRAZ S, PARMENTIER M, MÉNEZ B, et al. Experimental and numerical modeling of bacterially induced pH increase and calcite precipitation in saline aquifers[J]. Chemical Geology, 2009, 265(1): 44–53.
    [38]
    CUTHBERT M O, RILEY M S, HANDLEY-SIDHU S, et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. Pasteurii biofilms and limits due to bacterial encapsulation[J]. Ecological Engineering, 2012, 41: 32–40. doi: 10.1016/j.ecoleng.2012.01.008
    [39]
    QIN C Z, HASSANIZADEH S M, EBIGBO A. Pore-scale network modeling of microbially induced calcium carbonate precipitation: insight into scale dependence of biogeochemical reaction rates[J]. Water Resources Research, 2016, 52(11): 8794–8810. doi: 10.1002/2016WR019128
    [40]
    HOMMEL J, EBIGBO A, GERLACH R, et al. Finding a balance between accuracy and effort for modeling biomineralization[J]. Energy Procedia, 2016, 97: 379–386. doi: 10.1016/j.egypro.2016.10.028

Catalog

    Article views (386) PDF downloads (207) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return