Citation: | LI Shuang-jie, WU Hao-liang, FU Xian-lei, JIANG Ning-jun, WAN Jian-lei, LI Jiang-shan, DU Yan-jun. Experimental study on chemico-osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1078-1086. DOI: 10.11779/CJGE202206012 |
[1] |
刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3): 6–30. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603003.htm
LIU Song-yu, ZHAN Liang-tong, HU Li-ming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2016, 49(3): 6–30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603003.htm
|
[2] |
陈云敏, 谢海建, 张春华. 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36(1): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm
CHEN Yun-min, XIE Hai-jian, ZHANG Chun-hua. Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36(1): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm
|
[3] |
钱学德, 朱伟, 王升位. 填埋场和污染场地防污屏障设计与施工-上册[M]. 北京: 科学出版社, 2017.
QIAN Xue-de, ZHU Wei, WANG Sheng-wei. Design and Condtruction of Protective Barriers for Waste Containments and Contaminated Sites[M]. Beijing: Science Press, 2017. (in Chinese)
|
[4] |
ROWE R, QUIGLEY R, BOOKER J. Barrier Systems for Waste Disposal Facilities[M]. London: CRC Press, 2014.
|
[5] |
YEO S S, SHACKELFORD C D, EVANS J C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1189–1198. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1189)
|
[6] |
WAN H W, SHUI Z H, LIN Z S. Analysis of geometric characteristics of GGBS particles and their influences on cement properties[J]. Cement and Concrete Research, 2004, 34(1): 133–137. doi: 10.1016/S0008-8846(03)00252-7
|
[7] |
LIU S H, HAN W W, LI Q. Hydration properties of ground granulated blast-furnace slag (GGBS) under different hydration environments[J]. Materials Science, 2017, 23(1): 70–77.
|
[8] |
HAHA M B, LOTHENBACH B, SAOUT G L, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part Ⅰ: effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955–963. doi: 10.1016/j.cemconres.2011.05.002
|
[9] |
YI Y L, LISKA M, AL-TABBAA A. Initial investigation into the use of GGBS-MgO in soil stabilisation[C]//Proceedings of the Fourth International Conference on Grouting and Deep Mixing. 2012. New Orleans.
|
[10] |
伍浩良, 杜延军, 王菲, 等. 碱激发矿渣膨润土系竖向隔离墙体材料施工和易性及强度特性[J]. 东南大学学报(自然科学版), 2016, 46(增刊1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1005.htm
WU Hao-liang, DU Yan-jun, WANG Fei, et al. Workability and strength characteristics of alkali-activated slag-bentonite backfills for vertical slurry cutoff wall[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(S1): 25–30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1005.htm
|
[11] |
WU H L, JIN F, ZHOU A N, et al. The engineering properties and reaction mechanism of MgO-activated slag cement-clayey sand-bentonite (MSB) cutoff wall backfills[J]. Construction and Building Materials, 2021, 271: 121890. doi: 10.1016/j.conbuildmat.2020.121890
|
[12] |
WU H L, JIN F, NI J, et al. Engineering properties of vertical cutoff walls consisting of reactive magnesia-activated slag and bentonite: workability, strength, and hydraulic conductivity[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019263. doi: 10.1061/(ASCE)MT.1943-5533.0002908
|
[13] |
WU H L, NI J, ZENG L, et al. Durability of alkali-activated slag-bentonite cutoff wall exposed to sodium sulfate and Pb-Zn solution[C]//The International Congress on Environmental Geotechnics, 2018, Hangzhou.
|
[14] |
傅贤雷, 杜延军, 沈胜强, 等. PAC改性膨润土/砂竖向阻隔屏障回填料化学渗透膜效应及扩散特性研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3669–3675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm
FU Xian-lei, DU Yan-jun, SHEN Sheng-qiang, et al. Chemico-osmotic membrane behavior and diffusive properties of PAC amended bentonite/sand vertical cutoff wall backfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3669–3675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm
|
[15] |
傅贤雷, 张润, 万勇, 等. 改性土–膨润土阻隔屏障化学渗透膜效应研究[J]. 岩土工程学报, 2020, 42(增刊1): 172–176. doi: 10.11779/CJGE2020S1034
FU Xian-lei, ZHANG Run, WAN Yong, et al. Chemico-osmotic membrane behaviors of amended soil-bentonite vertical barrier[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 172–176. (in Chinese) doi: 10.11779/CJGE2020S1034
|
[16] |
FU X L, ZHANG R, REDDY K R, et al. Membrane behavior and diffusion properties of sand/SHMP-amended bentonite vertical cutoff wall backfill exposed to lead contamination[J]. Engineering Geology, 2021, 284: 106037. doi: 10.1016/j.enggeo.2021.106037
|
[17] |
SCALIA J IV, BOHNHOFF G L, SHACKELFORD C D, et al. Enhanced bentonites for containment of inorganic waste leachates by GCLs[J]. Geosynthetics International, 2018, 25(4): 392–411. doi: 10.1680/jgein.18.00024
|
[18] |
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.
|
[19] |
SHACKELFORD C D, LEE J M. The destructive role of diffusion on clay membrane behavior[J]. Clays and Clay Minerals, 2003, 51(2): 186–196. doi: 10.1346/CCMN.2003.0510209
|
[20] |
肖承坤. 我国铅污染现状分析[C]//全国铅污染监测与控制治理技术交流研讨会, 2007, 上海.
XIAO Cheng-kun. Analysis of present situation about lead pollution in China[C]//National Lead Pollution Monitoring and Control Technology Exchange Seminar, 2007, Shanghai. (in Chinese)
|
[21] |
地下水环境质量标准: GB/T14848—2017[S]. 2017.
Environmental Quality Standard for Groundwater: GB/T14848—2017[S]. 2017. (in Chinese)
|
[22] |
Standard Test Method for Electrical Conductivity and Resistivity of Water: ASTM D1125—14[S]. 2014.
|
[23] |
Method for pH of Aqueous Solutions with the Glass Electrode: ASTM E70-07[S]. 2015.
|
[24] |
FRITZ S J. Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214–223. doi: 10.1346/CCMN.1986.0340212
|
[25] |
MALUSIS M A, SHACKELFORD C D. Chemico-osmotic efficiency of a geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(2): 97–106. doi: 10.1061/(ASCE)1090-0241(2002)128:2(97)
|
[26] |
KANG J B, SHACKELFORD C D. Clay membrane testing using a flexible-wall cell under closed-system boundary conditions[J]. Applied Clay Science, 2009, 44(1/2): 43–58.
|
[27] |
YE W M, SU W, CHEN Y G, et al. Membrane behavior of compacted GMZ bentonite and its granite mixture[J]. Environmental Earth Sciences, 2017, 76(20): 1–13.
|
[28] |
MALUSIS M A, SHACKELFORD C D, OLSEN H W. A laboratory apparatus to measure chemico-osmotic efficiency coefficients for clay soils[J]. Geotechnical Testing Journal, 2001, 24(3): 229–242. doi: 10.1520/GTJ11343J
|
[29] |
HENNING J T, EVANS J C, SHACKELFORD C D. Membrane behavior of two backfills from field-constructed soil-bentonite cutoff walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1243–1249. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1243)
|
[30] |
SHACKELFORD C D. Laboratory diffusion testing for waste disposal—A review[J]. Journal of Contaminant Hydrology, 1991, 7(3): 177–217. doi: 10.1016/0169-7722(91)90028-Y
|
[31] |
陈左波. 砂-膨润土系竖向隔离墙阻滞重金属污染物运移特性的试验研究[D]. 南京: 东南大学, 2014.
CHEN Zuo-bo. Research of Limiting Migration of Heavy Metal of Sand. Bentonite Vertical Cutoff Wall[D]. Nanjing: Southeast University, 2017. (in Chinese)
|
[32] |
SHACKELFORD C D. Membrane behavior in geosynthetic clay liners[C]//Geo-Frontiers Congress, 2011, Dallas.
|
[33] |
梅丹兵. 土–膨润土系竖向隔离工程屏障阻滞污染物运移的模型试验研究[D]. 南京: 东南大学, 2017.
MEI Dan-bing. Model Test Study of Limiting Migration of HeavyMeal of Soil-Bentonite Vertical Cutoff Wall[D]. Nanjing: Southeast University, 2017. (in Chinese)
|
[34] |
张润. 六偏磷酸钠改良膨润土系竖向工程屏障防渗吸附扩散性能研究[D]. 南京: 东南大学, 2018.
ZHANG Run. Hydraulic and Containment Performance of Shmp-Amended Soil-Bentonite Vertical Cutoff Wall Backfills Against Heavy Metals[D]. Nanjing: Southeast University, 2018. (in Chinese)
|
[35] |
TANG Q. Factors Affecting Waste Leachate Generation and Barrier Performance of Landfill Liners[D]. Tokyo: University of Tokyo. 2013.
|
[36] |
SHACKELFORD C. Membrane behavior in engineered bentonite-based containment barriers[M]//Coupled Phenomena in Environmental Geotechnics. London: CRC Press, 2013.
|
[37] |
CONSOLI N C, HEINECK K S, CARRARO J A H. Portland cement stabilization of soil–bentonite for vertical cutoff walls against diesel oil contaminant[J]. Geotechnical and Geological Engineering, 2010, 28(4): 361-371. doi: 10.1007/s10706-009-9297-5
|
[38] |
OWAIDAT L M, ANDROMALOS K B, SISLEY J L, et al. Construction of a soil-cement-bentonite slurry wall for a levee strengthening program[C]//Proceedings of the 1999 Annual Conference of the Association of State Dam Safety Officials, 1999. St Louis.
|