• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SUN Yue, XIAO Yang, ZHOU Wei, LIU Han-long. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061-1068. DOI: 10.11779/CJGE202206010
Citation: SUN Yue, XIAO Yang, ZHOU Wei, LIU Han-long. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061-1068. DOI: 10.11779/CJGE202206010

Particle breakage and shape evolution of calcareous and quartz sands under compression

More Information
  • Received Date: July 11, 2021
  • Available Online: September 22, 2022
  • The influences of particle breakage on the mechanical properties of soil are significant. The previous studies mainly focus on the variation of particle size during particle breakage but neglect the change of particle shape. In order to study the evolution of particle breakage, a series of one-dimensional compression experiments are carried out with calcareous sand and quartz sand, and the changes of particle shape are quantified. The results show that the relative breakage index of the two sands increases with the increase of plastic work per unit volume with an obvious hyperbolic relationship. The aspect ratio, sphericity and roundness of the calcareous sand increase with the expanded breakage, but the variation of convexity is unobvious. For the quartz sand, the aspect ratio and sphericity decrease first and then increase, while the convexity decreases to be stable and the sphericity continues to increase. This trend can be well quantified by defining the overall shape value of the samples. In addition, the overall shape value of the calcareous sand shows a hyperbola relationship with the relative breakage, and that of the quartz sand shows a parabola relationship.
  • [1]
    XIAO Y, WANG L, JIANG X, et al. Acoustic emission and force drop in grain crushing of carbonate sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(9): 04019057.
    [2]
    张家铭, 汪稔, 张阳明, 等. 土体颗粒破碎研究进展[J]. 岩土力学, 2003, 24(增刊2): 661–665. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2157.htm

    ZHANG Jia-ming, WANG Ren, ZHANG Yang-ming, et al. Advance in studies of soil grain crush[J]. Rock and Soil Mechanics, 2003, 24(S2): 661–665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2157.htm
    [3]
    赵飞翔, 迟世春, 米晓飞. 基于颗粒破碎特性的堆石材料级配演化模型[J]. 岩土工程学报, 2019, 41(9): 1707–1714. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909017.htm

    ZHAO Fei-xiang, CHI Shi-chun, MI Xiao-fei. Gradation evolution model based on particle breakage characteristics for rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1707–1714. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909017.htm
    [4]
    贾宇峰, 王丙申, 迟世春. 堆石料剪切过程中的颗粒破碎研究[J]. 岩土工程学报, 2015, 37(9): 1692–1697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509024.htm

    JIA Yu-feng, WANG Bing-shen, CHI Shi-chun. Particle breakage of rockfill during triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1692–1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509024.htm
    [5]
    COOP M R, SORENSEN K K, BODAS FREITAS T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157–163.
    [6]
    张季如, 胡泳, 张弼文, 等. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784–791. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm

    ZHANG Ji-ru, HU Yong, ZHANG Bi-wen, et al. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784–791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm
    [7]
    XIAO Y, LIU H, XIAO P, et al. Fractal crushing of carbonate sands under impact loading[J]. Géotechnique Letters, 2016, 6(3): 199–204.
    [8]
    MCDOWELL G R, BOLTON M D. On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667–679. doi: 10.1680/geot.1998.48.5.667
    [9]
    孟敏强, 王磊, 蒋翔, 等. 基于尺寸效应的粗粒土单颗粒破碎试验及数值模拟[J]. 岩土力学, 2020, 41(9): 2953–2962. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009012.htm

    MENG Min-qiang, WANG Lei, JIANG Xiang, et al. Single-particle crushing test and numerical simulation of coarse grained soil based on size effect[J]. Rock and Soil Mechanics, 2020, 41(9): 2953–2962. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202009012.htm
    [10]
    童晨曦, 张升, 李希, 等. 基于Markov链的岩土材料颗粒破碎演化规律研究[J]. 岩土工程学报, 2015, 37(5): 870–877. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505017.htm

    TONG Chen-xi, ZHANG Sheng, LI Xi, et al. Evolution of geotechnical materials based on Markov chain considering particle crushing[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 870–877. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505017.htm
    [11]
    蔡正银, 李小梅, 关云飞, 等. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923–929. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm

    CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei, et al. Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923–929. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605019.htm
    [12]
    XIAO Y, WANG C G, ZHANG Z C, et al. Constitutive modeling for two sands under high pressure[J]. International Journal of Geomechanics, 2021, 21(5): 04021042. doi: 10.1061/(ASCE)GM.1943-5622.0001987
    [13]
    曾凯锋, 刘华北. 考虑颗粒破碎的钙质砂修正邓肯-张E-B模型[J]. 工程地质学报, 2020, 28(1): 94–102. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001011.htm

    ZENG Kai-feng, LIU Hua-bei. A modified Duncan-Chang E-B model with particle breakage for calcareous sand[J]. Journal of Engineering Geology, 2020, 28(1): 94–102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001011.htm
    [14]
    蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357–1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm

    CAI Zheng-yin, LI Xiao-mei, HAN Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357–1364. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201608001.htm
    [15]
    DAVID SUITS L, SHEAHAN T C, VALDES J R, et al. Monitoring the hydraulic conductivity of crushing sands[J]. Geotechnical Testing Journal, 2006, 29(4): 13302.
    [16]
    刘萌成, 高玉峰, 刘汉龙. 模拟堆石料颗粒破碎对强度变形的影响[J]. 岩土工程学报, 2011, 33(11): 1691–1699. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111010.htm

    LIU Meng-cheng, GAO Yu-feng, LIU Han-long. Effect of particle breakage on strength and deformation of modeled rockfills[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11): 1691–1699. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201111010.htm
    [17]
    徐琨, 周伟, 马刚, 等. 基于离散元法的颗粒破碎模拟研究进展[J]. 岩土工程学报, 2018, 40(5): 880–889. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm

    XU Kun, ZHOU Wei, MA Gang, et al. Review of particle breakage simulation based on DEM[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 880–889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201805016.htm
    [18]
    ZHU F, ZHAO J D. Interplays between particle shape and particle breakage in confined continuous crushing of granular media[J]. Powder Technology, 2021, 378: 455–467.
    [19]
    XIAO Y, LONG L H, MATTHEW EVANS T, et al. Effect of particle shape on stress-dilatancy responses of medium-dense sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(2): 04018105.
    [20]
    BARRETT P J. The shape of rock particles, a critical review[J]. Sedimentology, 1980, 27(3): 291–303.
    [21]
    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591–602.
    [22]
    LI L Z, BEEMER R D, ISKANDER M. Granulometry of two marine calcareous sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020171.
    [23]
    MIAO G, AIREY D. Breakage and ultimate states for a carbonate sand[J]. Géotechnique, 2013, 63(14): 1221–1229.
    [24]
    YU J D, SHEN C M, LIU S H, et al. Exploration of the survival probability and shape evolution of crushable particles during one-dimensional compression using dyed gypsum particles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020121.
    [25]
    XIAO Y, YUAN Z X, CHU J, et al. Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression[J]. Acta Geotechnica, 2019, 14(6): 1741–1755.
    [26]
    张小燕, 蔡燕燕, 王振波, 等. 珊瑚砂高压力下一维蠕变分形破碎及颗粒形状分析[J]. 岩土力学, 2018, 39(5): 1573–1580. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805004.htm

    ZHANG Xiao-yan, CAI Yan-yan, WANG Zhen-bo, et al. Fractal breakage and particle shape analysis for coral sand under high-pressure and one-dimensional creep conditions[J]. Rock and Soil Mechanics, 2018, 39(5): 1573–1580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805004.htm
    [27]
    MCDOWELL G R. On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139–145.
    [28]
    张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005, 24(18): 3327–3331. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm

    ZHANG Jia-ming, WANG Ren, SHI Xiang-feng, et al. Compression and crushing behavior of calcareous sand under confined compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327–3331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200518021.htm
    [29]
    田海, 孔令伟, 赵翀. 基于粒度熵概念的贝壳砂颗粒破碎特性描述[J]. 岩土工程学报, 2014, 36(6): 1152–1159. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406027.htm

    TIAN Hai, KONG Ling-wei, ZHAO Chong. Characterization of particle breakage with grading entropy on shell sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1152–1159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201406027.htm
    [30]
    XIAO Y, CHEN H, STUEDLEIN A W, et al. Restraint of particle breakage by biotreatment method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020123.
    [31]
    EINAV I. Breakage mechanics—part Ⅰ: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274–1297.
    [32]
    XIAO Y, WANG C G, WU H R, et al. New simple breakage index for crushable granular soils[J]. International Journal of Geomechanics, 2021, 21(8): 04021136.
    [33]
    TYLER S W, WHEATCRAFT S W. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of America Journal, 1989, 53(4): 987–996.
    [34]
    YU F W. Characteristics of particle breakage of sand in triaxial shear[J]. Powder Technology, 2017, 320: 656–667.
    [35]
    DAOUADJI A, HICHER P. An enhanced constitutive model for crushable granular materials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(6): 555–580.
  • Cited by

    Periodical cited type(2)

    1. 陈璐,陈青,张梅,于世波,杨小聪. 矿山深部开采顺序优化与岩爆灾害超前控制效果研究. 中国矿业. 2025(04): 76-86 .
    2. 孙宽,陈如意,胡新伟. 网格精度与对称性对深部岩体分区破裂化的影响. 河南科技. 2024(20): 61-65 .

    Other cited types(2)

Catalog

    Article views (281) PDF downloads (205) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return