• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007
Citation: XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007

Cross-isotropic strength criteria based on spatial plane variation

More Information
  • Received Date: May 16, 2021
  • Available Online: September 22, 2022
  • The geotechnical materials in nature are affected by the natural sedimentation and often have significant cross-isotropic characteristics. The difference in strength and deformation of structural units of soil in different directions is the main issue that should be considered when affecting the design and construction of large-scale civil and hydraulic projects. The research on the cross isotropy of geotechnical materials is of great scientific significance to the safety and stability of actual engineering structures. Based on the study on the relationship among the strength variation of octahedral principal stress space domain, the spatial mobilized plane and the stress state, a comprehensive parameter reflecting the stress conditions and material properties is defined. By analyzing the relationship among this parameter, the failure stress and the stress state, the physical meaning of the parameter is clarified, and based on the space plane strength theory, the sliding failure of the three principal stress planes is considered. It is assumed that the space on the ratio of the shear stress to the normal stress is constant, and a cross-isotropic failure criterion is established considering that the spatial sliding surface of geomaterials changes with the stress conditions of the spatial stress domain. Compared with the experimental results, it is shown that the cross-isotropic failure criterion based on the spatial mobilized plane variation can better reflect the strength characteristics of the materials, and it is particularly applicable to the strength prediction of the stress region when the principal stress axis deflects.
  • [1]
    路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54–63. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm

    LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al. Three- dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm
    [2]
    罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127–131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm

    LUO Ting, LI Meng, KONG Yu-xia, et al. Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm
    [3]
    王林, 龙冈文夫. 关于沉积软岩固有各向异性特性的研究[J]. 岩石力学与工程学报, 2003, 22(6): 894–898. doi: 10.3321/j.issn:1000-6915.2003.06.003

    WANG Lin, TATSUOKA Fumio. Examining anisotropy of sedimentary soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 894–898. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.06.003
    [4]
    ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25–38. doi: 10.3208/sandf1972.18.25
    [5]
    殷宗泽. 土的侧膨胀性及其对土石坝应力变形的影响[J]. 水利学报, 2000, 31(7): 49–54, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm

    YIN Zong-ze. The effect of soil lateral dilation behavior on stress and strain of earth and rockfill dams[J]. Journal of Hydraulic Engineering, 2000, 31(7): 49–54, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm
    [6]
    MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59–70.
    [7]
    LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1037–1053. doi: 10.1061/AJGEB6.0000204
    [8]
    MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2): 119–127. doi: 10.3208/sandf1972.30.2_119
    [9]
    宋美娜. 考虑各向异性的广义非线性强度准则[D]. 北京: 北京航空航天大学, 2008.

    SONG Mei-na. Generalized Nonlinear Strength Criterion Considering Anisotropy[D]. Beijing: Beihang University, 2008. (in Chinese)
    [10]
    李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885–1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm

    LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885–1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm
    [11]
    LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868–880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
    [12]
    DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130(11): 1319–1333. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1319)
    [13]
    姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 43–50. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm

    YAO Yang-ping, KONG Yu-xia. Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm
    [14]
    YAO Y P, KONG Y X. Extended UH model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853–866. doi: 10.1061/(ASCE)EM.1943-7889.0000397
    [15]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193–217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193–217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
    [16]
    YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54–78.
    [17]
    许萍, 邵生俊, 张帅. 黄土(Q3)横观各向同性强度准则研究[J]. 岩土工程学报, 2018, 40(1): 116–121. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm

    XU Ping, SHAO Sheng-jun, ZHANG Shuai. Strength criterion of cross-anisotropic Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 116–121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm
  • Cited by

    Periodical cited type(19)

    1. 张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
    2. 高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
    3. 王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
    4. 朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
    5. 徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
    6. 耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
    7. 蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
    8. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    9. 郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
    10. 袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
    11. 赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
    12. 杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
    13. 胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
    14. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    15. 张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 . 本站查看
    16. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
    17. 贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
    18. 黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
    19. 申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 . 本站查看

    Other cited types(19)

Catalog

    Article views PDF downloads Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return