Citation: | XU Ping, SHAO Sheng-jun, FANG Ling-yun, SUN Zhi-jun. Cross-isotropic strength criteria based on spatial plane variation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1036-1043. DOI: 10.11779/CJGE202206007 |
[1] |
路德春, 梁靖宇, 王国盛, 等. 横观各向同性土的三维强度准则[J]. 岩土工程学报, 2018, 40(1): 54–63. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm
LU De-chun, LIANG Jing-yu, WANG Guo-sheng, et al. Three- dimensional strength criterion for transverse isotropic geomaterials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54–63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801005.htm
|
[2] |
罗汀, 李萌, 孔玉侠, 等. 基于SMP的岩土各向异性强度准则[J]. 岩土力学, 2009, 30(增刊2): 127–131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm
LUO Ting, LI Meng, KONG Yu-xia, et al. Failure criterion based on SMP for anisotropic geomaterials[J]. Rock and Soil Mechanics, 2009, 30(S2): 127–131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2029.htm
|
[3] |
王林, 龙冈文夫. 关于沉积软岩固有各向异性特性的研究[J]. 岩石力学与工程学报, 2003, 22(6): 894–898. doi: 10.3321/j.issn:1000-6915.2003.06.003
WANG Lin, TATSUOKA Fumio. Examining anisotropy of sedimentary soft rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6): 894–898. (in Chinese) doi: 10.3321/j.issn:1000-6915.2003.06.003
|
[4] |
ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test[J]. Soils and Foundations, 1978, 18(1): 25–38. doi: 10.3208/sandf1972.18.25
|
[5] |
殷宗泽. 土的侧膨胀性及其对土石坝应力变形的影响[J]. 水利学报, 2000, 31(7): 49–54, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm
YIN Zong-ze. The effect of soil lateral dilation behavior on stress and strain of earth and rockfill dams[J]. Journal of Hydraulic Engineering, 2000, 31(7): 49–54, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200007008.htm
|
[6] |
MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59–70.
|
[7] |
LADE P V, DUNCAN J M. Elastoplastic stress-strain theory for cohesionless soil[J]. Journal of the Geotechnical Engineering Division, 1975, 101(10): 1037–1053. doi: 10.1061/AJGEB6.0000204
|
[8] |
MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2): 119–127. doi: 10.3208/sandf1972.30.2_119
|
[9] |
宋美娜. 考虑各向异性的广义非线性强度准则[D]. 北京: 北京航空航天大学, 2008.
SONG Mei-na. Generalized Nonlinear Strength Criterion Considering Anisotropy[D]. Beijing: Beihang University, 2008. (in Chinese)
|
[10] |
李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885–1892. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm
LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure criterion of anisotropic sand with method of macro-meso incorporation[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885–1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201009019.htm
|
[11] |
LI X S, DAFALIAS Y F. Constitutive modeling of inherently anisotropic sand behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(10): 868–880. doi: 10.1061/(ASCE)1090-0241(2002)128:10(868)
|
[12] |
DAFALIAS Y F, PAPADIMITRIOU A G, LI X S. Sand plasticity model accounting for inherent fabric anisotropy[J]. Journal of Engineering Mechanics, 2004, 130(11): 1319–1333. doi: 10.1061/(ASCE)0733-9399(2004)130:11(1319)
|
[13] |
姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究[J]. 水利学报, 2012, 43(1): 43–50. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm
YAO Yang-ping, KONG Yu-xia. Study on strength and failure criterion of cross-anisotropic soil[J]. Journal of Hydraulic Engineering, 2012, 43(1): 43–50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201201009.htm
|
[14] |
YAO Y P, KONG Y X. Extended UH model: three-dimensional unified hardening model for anisotropic clays[J]. Journal of Engineering Mechanics, 2012, 138(7): 853–866. doi: 10.1061/(ASCE)EM.1943-7889.0000397
|
[15] |
姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193–217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
YAO Yang-ping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193–217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
|
[16] |
YAO Y, TIAN Y, GAO Z. Anisotropic UH model for soils based on a simple transformed stress method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(1): 54–78.
|
[17] |
许萍, 邵生俊, 张帅. 黄土(Q3)横观各向同性强度准则研究[J]. 岩土工程学报, 2018, 40(1): 116–121. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm
XU Ping, SHAO Sheng-jun, ZHANG Shuai. Strength criterion of cross-anisotropic Q3 loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 116–121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801014.htm
|
1. |
张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
![]() | |
2. |
高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
![]() | |
3. |
王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
![]() | |
4. |
朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
![]() | |
5. |
徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
![]() | |
6. |
耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
![]() | |
7. |
蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
![]() | |
8. |
付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 .
![]() | |
9. |
郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
![]() | |
10. |
袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
![]() | |
11. |
赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
![]() | |
12. |
杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
![]() | |
13. |
胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
![]() | |
14. |
张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
![]() | |
15. |
张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 .
![]() | |
16. |
陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
![]() | |
17. |
贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
![]() | |
18. |
黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
![]() | |
19. |
申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 .
![]() |