LIANG Yong-hui, WANG Wei-dong, FENG Shi-jin, LIU Qing, WU Jiang-bin. Field study on treatment of collapsible silt for high-fill airport project[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1027-1035. DOI: 10.11779/CJGE202206006
    Citation: LIANG Yong-hui, WANG Wei-dong, FENG Shi-jin, LIU Qing, WU Jiang-bin. Field study on treatment of collapsible silt for high-fill airport project[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1027-1035. DOI: 10.11779/CJGE202206006

    Field study on treatment of collapsible silt for high-fill airport project

    More Information
    • Received Date: May 12, 2021
    • Available Online: September 22, 2022
    • The performance of the natural foundation soils in the original project site is the key factor affecting the deformation and stability of the high-fill foundation in airports. There is a layer of silt stratum with ultra-low water content and strong collapsibility, embedded in the shallow layer of the construction site of the north extension project of Urumqi Airport in Xinjiang, China, which may cause unavoidable collapsible subsidence to the high-fill foundation. In order to evaluate the feasibility and the effect of using the dynamic compaction method to treat the collapsibility of silt soil in this area, the field experiments with two different compaction energies are carried out before large-area construction of the high-fill backfill. The tests on physical and mechanical properties, plate load tests, immersion load tests, standard penetration tests and multi-channel transient surface wave tests are conducted before and after the dynamic compaction. In addition, the vibration and lateral displacement of the soils around the test area are tested during the dynamic compaction. Based on the test results, the effect of eliminating the collapsibility of silt and its mechanism are discussed, and the influences on the adjacent ground by the dynamic compaction method are also evaluated. Simultaneously, some phenomena found during the tests and their probable causes are analyzed, and thus the corresponding engineering measures are proposed, which can be used as a reference for similar high-fill projects with ultro-low water content.
    • [1]
      民用机场岩土工程设计规范: MH/T 5027[S]. 2013.

      Code for Geotechnical Design of Civil Airports: MH/T 5027[S]. 2013. (in Chinese)
      [2]
      高填方地基技术规范: GB 51254—2017[S]. 2017.

      Technical Code for Deep Filled Ground: GB 51254—2017[S]. 2017. (in Chinese)
      [3]
      葛苗苗, 李宁, 张炜, 等. 黄土高填方沉降规律分析及工后沉降反演预测[J]. 岩石力学与工程学报, 2017, 36(3): 745–753. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm

      GE Miao-miao, LI Ning, ZHANG Wei, et al. Settlement behavior and inverse prediction of post-construction settlement of high filled loess embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 745–753. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703024.htm
      [4]
      杜伟飞, 郑建国, 刘争宏, 等. 黄土高填方地基沉降规律及排气条件影响[J]. 岩土力学, 2019, 40(1): 325–331. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm

      DU Wei-fei, ZHENG Jian-guo, LIU Zheng-hong, et al. Settlement behavior of high loess-filled foundation and impact from exhaust conditions[J]. Rock and Soil Mechanics, 2019, 40(1): 325–331. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201901034.htm
      [5]
      侯森, 任庚, 韩黎明, 等. 承德机场高填方地基工后沉降预测[J]. 地下空间与工程学报, 2017, 13(增刊1): 279–284. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2017S1045.htm

      HOU Sen, REN Geng, HAN Li-ming, et al. Post-construction settlement prediction of the high embankment of Chengde Airport[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(S1): 279–284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2017S1045.htm
      [6]
      臧亚君, 刘东燕, 蒋克锋, 等. 西南某机场高填方地基稳定性分析[J]. 地下空间与工程学报, 2007, 3(4): 711–715. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200704027.htm

      ZANG Ya-jun, LIU Dong-yan, JIANG Ke-feng, et al. Stability analysis on high embankment foundation of an airport in southwest China[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(4): 711–715. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200704027.htm
      [7]
      朱才辉, 李宁, 刘明振, 等. 吕梁机场黄土高填方地基工后沉降时空规律分析[J]. 岩土工程学报, 2013, 35(2): 293–301. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm

      ZHU Cai-hui, LI Ning, LIU Ming-zhen, et al. Spatiotemporal laws of post-construction settlement of loess-filled foundation of Lüliang Airport[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 293–301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302015.htm
      [8]
      李保华, 郭伟林, 安明. 超高能级强夯处理低含水量湿陷性黄土原理研究[J]. 施工技术, 2015, 44(9): 112–114. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201509032.htm

      LI Bao-hua, GUO Wei-lin, AN Ming. Research on principle of ultra-high energy level dynamic compaction treating low water content collapsible loess[J]. Construction Technology, 2015, 44(9): 112–114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201509032.htm
      [9]
      LIN Z G, LI W M. Distribution and engineering properties of loess and loess-like soils in China[J]. Can Geotech J, 1982, 19(1): 76–91. doi: 10.1139/t82-007
      [10]
      朱彦鹏, 师占宾, 杨校辉. 强夯法处理山区机场高填方地基的试验[J]. 兰州理工大学学报, 2018, 44(5): 120–125. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201805022.htm

      ZHU Yan-peng, SHI Zhan-bin, YANG Xiao-hui. Experiment on high-filled foundation treatment of airport in mountainy area with dynamic compaction method[J]. Journal of Lanzhou University of Technology, 2018, 44(5): 120–125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201805022.htm
      [11]
      左来. 强夯技术在湿陷性粉土地基处理中的应用[J]. 科技资讯, 2012, 10(17): 79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201217063.htm

      ZUO Lai. Application of dynamic compaction technology in treatment of collapsible silt foundation[J]. Science & Technologu Information, 2012, 10(17): 79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZXLJ201217063.htm
      [12]
      大根义男. 实用土力学[M]. 卢友杰, 译. 北京: 机械工业出版社, 2012.

      DA Gen-yi-nan. Practical Soil Mechanics[M]. LU You-jie, trans. Beijing: Machinery Industry Press, 2012. (in Chinese)
      [13]
      孙进忠, 梁向前. 地基强夯加固质量安全监测理论与方法[M]. 北京: 化学工业出版社, 2013.

      SUN Jin-zhong, LIANG Xiang-qian. The Quality and Safety Monitoring Theory and Method for Dynamic Consolidation of Foundation[M]. Beijing: Chemical Industry Press, 2013. (in Chinese)
      [14]
      FENG S J, SHUI W H, GAO L Y, et al. Application of high energy dynamic compaction in coastal reclamation areas[J]. Marine Georesources & Geotechnology, 2010, 28(2): 130–142.
      [15]
      FENG S J, TAN K, SHUI W H, et al. Densification of desert sands by high energy dynamic compaction[J]. Engineering Geology, 2013, 157: 48–54.
    • Related Articles

      [1]PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516
      [2]SONG Xu-gen, WANG Zhi-yong, BAI Wei-wei, WANG Zhe, XIE Shu-meng, XIA Kai-zong. Spatial heterogeneity of engineering properties of Zhuhai soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 25-28. DOI: 10.11779/CJGE2019S1007
      [3]LIU Chun, XU Qiang, SHI Bin, GU Ying-fan. Digital image recognition method of rock particle and pore system and its application[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 925-931. DOI: 10.11779/CJGE201805018
      [4]SU Yin-jun, JIANG Bo, WENG Qi-ping. Analysis and design of conversion structure of an underground substation combined with superstructure[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(z2): 166-170. DOI: 10.11779/CJGE2017S2041
      [5]CAI Zheng-yin, LI Xiao-mei, HAN Lin, GUAN Yun-fei. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. DOI: 10.11779/CJGE201608001
      [6]ZHANG Min-si, HUANG Run-qiu, WANG Shu-hong, YANG Yong. Spatial block identification method based on meshing and its engineering application[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 477-485. DOI: 10.11779/CJGE201603011
      [7]SHEN Yang, XU Hai-dong, YOU Yan-feng. Cyclic electrode conversion law in treatment of soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 65-71. DOI: 10.11779/CJGE2015S1014
      [8]NIE Ru-song, LENG Wu-ming, WEI Wei. Equivalent conversion method for self-balanced tests[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 188-191.
      [9]CHEN Hongqi, HUANG Runqiu, LIN Feng. Study on the spatial engineering effect of large accumulation slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 323-328.
      [10]Yu Jianlin, Gong Xiaonan. Spatial behavior analysis of deep excavation[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(1): 24-28.
    • Cited by

      Periodical cited type(1)

      1. 黄瑶,陈闯,杨青森,颜泽群,司帅. 坝坡土工膜损伤对水库坝体边坡安全稳定的影响. 江苏水利. 2025(05): 47-52 .

      Other cited types(0)

    Catalog

      Article views (259) PDF downloads (187) Cited by(1)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return