• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MEI Song-hua, SHENG Qian, CUI Zhen, MEI Xian-cheng. Experimental study on energy absorption property of viscoelasticity damping layer[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 997-1005. DOI: 10.11779/CJGE202206003
Citation: MEI Song-hua, SHENG Qian, CUI Zhen, MEI Xian-cheng. Experimental study on energy absorption property of viscoelasticity damping layer[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 997-1005. DOI: 10.11779/CJGE202206003

Experimental study on energy absorption property of viscoelasticity damping layer

More Information
  • Received Date: July 20, 2021
  • Available Online: September 22, 2022
  • The flexible damping technology has been extensively acknowledged as an application for seismic damage reduction in underground engineering projects. To further develop and implement this technology, a viscoelastic damping layer structure is proposed based on the understanding of viscoelastic damping theory in the field of seismic resistance of bridge construction. An improved spilt hopkinson pressure bar (SHPB) test system is used to perform the impact tests on different rock-damping layer-concrete specimens. The energy absorption laws using different damping layer materials (rubber and silicone) and different damping layer structures (honeycomb, corrugated and cylindrical) are comparatively studied. At the same time, with the same layer material and structure of the damping layer, the energy absorption laws of the structures with different thicknesses of damping layer are compared and analyzed, and the optimal thickness is investigated. The results show that the incident energy absorbed by the damping layer structures of different damping layers has increased by more than 10%, compared to the control group (rock-concrete specimen). It is indicated that the structure has superior energy absorption characteristics and the rubber can absorb more incident energy as the damping layer than the high-damping silicone. Among various damping layer shapes, the composite damping layer structure with a honeycomb damping layer has better energy absorption characteristics than the others. In addition, after comparing and analyzing the energy absorption effects of the structures with different thicknesses of the damping layer, it is found that the optimal thickness of the damping layer with the best energy absorption effect is 20 mm. The overall results can serve as a theoretical and data support for the application of composite damping layer structures in seismic design of underground engineering projects.
  • [1]
    赵勇, 田四明. 中国铁路隧道数据统计[J]. 隧道建设. 2017, 37(5): 3–4. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202102021.htm

    ZHAO Yong, TIAN Si-ming. Statistics of railway tunnels in China[J]. Tunnel Construction, 2017, 37(5): 3–4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202102021.htm
    [2]
    蒋树屏. 中国公路隧道数据统计[J]. 隧道建设. 2017, 37(5): 1–2. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201705020.htm

    JIANG Shu-ping. Statistics of highway tunnels in China[J]. Tunnel Construction, 2017, 37(5): 1–2. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201705020.htm
    [3]
    邵根大, 骆文海, 李福庭, 等. 强地震作用下铁路隧道衬砌耐震性的研究[J]. 中国铁道科学, 1992, 13(2): 92–109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199202009.htm

    SHAO Gen-da, LUO Wen-hai, LI Fu-ting, et al. An investigation on aseismic behaviours of railway tunnel lining during earthquake[J]. China Railway Science, 1992, 13(2): 92–109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK199202009.htm
    [4]
    曹廷. 西南某铁路高烈度地震山区地质选线研究[D]. 成都: 西南交通大学, 2012.

    CAO Ting. Geological Route Selection of Railway Along High Seismic Moutain Region in Southwest China[D]. Chengdu: Southwest Jiaotong University, 2012. (in Chinese)
    [5]
    WANG Z Z, GAO B, JIANG Y J, et al. Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake[J]. Science in China Series E: Technological Sciences, 2009, 52(2): 546–558. doi: 10.1007/s11431-009-0054-z
    [6]
    LI T B. Damage to mountain tunnels related to the Wenchuan earthquake and some suggestions for aseismic tunnel construction[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2): 297–308. doi: 10.1007/s10064-011-0367-6
    [7]
    ZHANG X P, JIANG Y J, SUGIMOTO S. Seismic damage assessment of mountain tunnel: a case study on the Tawarayama tunnel due to the 2016 Kumamoto Earthquake[J]. Tunnelling and Underground Space Technology, 2018, 71: 138–148. doi: 10.1016/j.tust.2017.07.019
    [8]
    孙铁成, 王伟, 申玉生. 材料刚度匹配关系在地下结构减震原理中作用的研究[J]. 石家庄铁道大学学报(自然科学版), 2010, 23(2): 109–116. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201002020.htm

    SUN Tie-cheng, WANG Wei, SHEN Yu-sheng. Study on action of material stiffness matching relationship in antiseismic mechanism of underground structure[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2010, 23(2): 109–116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJZT201002020.htm
    [9]
    信春雷, 高波, 闫高明, 等. 跨走滑断层隧道地震破坏特征与抗减震措施研究[J]. 振动工程学报, 2016, 29(4): 694–703. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604017.htm

    XIN Chun-lei, GAO Bo, YAN Gao-ming, et al. Seismic damage characteristics and anti-seismic damping measures for tunnel across strike-slip faults[J]. Journal of Vibration Engineering, 2016, 29(4): 694–703. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201604017.htm
    [10]
    耿萍, 唐金良, 权乾龙, 等. 穿越断层破碎带隧道设置减震层的振动台模型试验[J]. 中南大学学报(自然科学版), 2013, 44(6): 2520–2526. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306046.htm

    GENG Ping, TANG Jin-liang, QUAN Qian-long, et al. Shaking table test for tunnel with shock absorption layer though fault zone[J]. Journal of Central South University (Science and Technology), 2013, 44(6): 2520–2526. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201306046.htm
    [11]
    胡俊. EPS混凝土力学性能及抗爆、抗震性能研究[D]. 合肥: 中国科学技术大学, 2012.

    HU Jun. Research on Mechanical Properties and Anti-Explosion, Seismic Performance of EPS Concrete[D]. Hefei: University of Science and Technology of China, 2012. (in Chinese)
    [12]
    仇文革, 舒磊, 胡辉, 等. 高压缩性混凝土材料在隧道穿越断层带的应用及减震效果研究[J]. 材料导报, 2012, 26(20): 154–157. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201220043.htm

    QIU Wen-ge, SHU Lei, HU Hui, et al. Application of high compression ratio concrete on tunnel crossing fault zone and damping effect study[J]. Materials Review, 2012, 26(20): 154–157. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201220043.htm
    [13]
    赵武胜, 陈卫忠, 马少森, 等. 泡沫混凝土隧道减震层减震机制[J]. 岩土力学, 2018, 39(3): 1027–1036. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803032.htm

    ZHAO Wu-sheng, CHEN Wei-zhong, MA Shao-sen, et al. Isolation effect of foamed concrete layer on the seismic responses of tunnel[J]. Rock and Soil Mechanics, 2018, 39(3): 1027–1036. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803032.htm
    [14]
    李明俊, 苏媛, 孙向春, 等. 层合阻尼结构各向异性设计之阻尼特性分析[J]. 复合材料学报, 2002, 19(3): 94–97. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200203018.htm

    LI Ming-jun, SU Yuan, SUN Xiang-chun, et al. Anisotropic design and its damping analysis of laminated damped structure[J]. Acta Materiae Compositae Sinica, 2002, 19(3): 94–97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE200203018.htm
    [15]
    王慧彩, 赵德有. 黏弹性阻尼夹层板动力特性分析及其试验研究[J]. 船舶力学, 2005(4): 109–118. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200504015.htm

    WANG Hui-cai, ZHAO De-you. Dynamic analysis and experiment of viscoelastic damped sandwich plate[J]. Journal of Ship Mechanics, 2005(4): 109–118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200504015.htm
    [16]
    曾宪奎, 贾伟臣, 陈洪帅, 等. 胶料配合剂用量对橡胶减震器减震性能的影响[J]. 橡胶工业, 2020, 67(3): 192–195. https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY202003013.htm

    ZENG Xian-kui, JIA Wei-chen, CHEN Hong-shuai, et al. Effect of compounding agent dosage on damping performance of rubber damper[J]. China Rubber Industry, 2020, 67(3): 192–195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJGY202003013.htm
    [17]
    李皓, 张龙飞, 陶忠, 等. 单跨框架教学楼橡胶隔震与BRB减震联合加固技术研究[J]. 世界地震工程, 2019, 35(2): 31–40. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201902005.htm

    LI Hao, ZHANG Long-fei, TAO Zhong, et al. Research on rubber isolation and BRB damping combined reinforcement technology for a single-span frame teaching building[J]. World Earthquake Engineering, 2019, 35(2): 31–40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC201902005.htm
    [18]
    曾志斌, 史永吉. 黏弹性阻尼材料减振技术及其在桥梁中的应用[J]. 中国铁道科学, 2002, 23(5): 89–94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200205015.htm

    ZENG Zhi-bin, SHI Yong-ji. Vibration-suppression technology of visco-elastic damping materials and its application to bridges[J]. China Railway Science, 2002, 23(5): 89–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200205015.htm
    [19]
    THOMPSON D J, JONES C J C, WATERS T P, et al. A tuned damping device for reducing noise from railway track[J]. Applied Acoustics, 2007, 68(1): 43–57.
    [20]
    马学强. 黏弹阻尼减振降噪材料的阻尼性能及约束阻尼结构研究[D]. 青岛: 青岛理工大学, 2010.

    MA Xue-qiang. The Studies on Damping Properties of Viscous Elastic Damping Shock Absorbing Material and Constrained Damping Structure[D]. Qingdao: Qingdao Tehcnology University, 2010. (in Chinese)
    [21]
    艾振, 黄逸哲, 李壮, 等. 含弹性约束复合阻尼板的振动机理与特性[J]. 振动测试与诊断, 2020, 40(3): 443–449, 621. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003003.htm

    AI Zhen, HUANG Yi-zhe, LI Zhuang, et al. Vibration mechanism and characteristics of composite damping plates with elastic constraints[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3): 443–449, 621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003003.htm
    [22]
    王明年. 高地震区地下结构减震技术原理的研究[D]. 成都: 西南交通大学, 1999.

    WANG Ming-nian. Research on Principles of Shock Absorption Technology for Underground Structures in High Seismic Areas[D]. Chengdu: Southwest Jiaotong University, 1999. (in Chinese)
    [23]
    GREEN S, PERKINS R. Uniaxial compression tests at varying strain rates on three geologic materials[C]// Proceedings of the 10th Symposium on Rock Mechanics, 1968, Austin.
    [24]
    LOGAN J M, HANDIN J. Triaxial compression testing at intermediate strain rates Triaxial compression testing at intermediate strain rates[C]// The 12th US Symposium on Rock Mechanics (USRMS), 1970, Roola.
    [25]
    ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478.
    [26]
    李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究[J]. 岩石力学与工程学报, 2017, 36(10): 2393–2405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710007.htm

    LI Xiao-feng, LI Hai-bo, LIU Kai, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710007.htm
    [27]
    LI X B, ZHOU Z L. Large diameter SHPB tests with special shape striker[J]. ISRM News J, 2009, 12: 76–79.
    [28]
    乔兰, 周明, 杨建明, 等. 高阻尼橡胶用于岩石动载冲击防护的吸能特性试验研究[J]. 岩石力学与工程学报, 2018, 37(4): 961–968. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804018.htm

    QIAO Lan, ZHOU Ming, YANG Jian-ming, et al. Experimental study on energy absorption of high damping rubber for rock under dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 961–968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804018.htm
    [29]
    MA S S, CHEN W Z, ZHAO W S. Mechanical properties and associated seismic isolation effects of foamed concrete layer in rock tunnel[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 159–171.
    [30]
    ZHOU Y X, XIA K W, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-Ⅰ fracture toughness of rock materials[C]// In the ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. 2011, Springer.
    [31]
    龙娟. EPDM/ENR宽温域阻尼材料的制备与阻尼机理研究[D]. 广州: 华南理工大学, 2015.

    LONG Juan. Preparation and Damping Mechanism Study of EPDM/ENR Damping Materal with Broad Temperature Range[D]. Guangzhou: South China University of Technology, 2015. (in Chinese)

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return