Citation: | ZHOU Xiao-ping, JIA Zhi-ming. Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 988-996. DOI: 10.11779/CJGE202206002 |
[1] |
FREIJ-AYOUB R, DYSKIN A V, GALYBIN A N. The dislocation approximation for calculating crack interaction[J]. International Journal of Fracture, 1997, 86(4): 57–62.
|
[2] |
RYBACZUK M, STOPPEL P. The fractal growth of fatigue defects in materials[J]. International Journal of Fracture, 2000, 103(1): 71–94. doi: 10.1023/A:1007635717332
|
[3] |
CHEN Y Z. General case of multiple crack problems in an infinite plate[J]. Engineering Fracture Mechanics, 1984, 20(4): 591–597. doi: 10.1016/0013-7944(84)90034-1
|
[4] |
CHENG H, ZHOU X P, ZHU J, et al. The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3481–3494. doi: 10.1007/s00603-016-0998-9
|
[5] |
ZHANG J Z, ZHOU X P. AE event rate characteristics of flawed granite: from damage stress to ultimate failure[J]. Geophysical Journal International, 2020, 222(2): 795–814. doi: 10.1093/gji/ggaa207
|
[6] |
CARPINTERI A, MONETTO I. Snap-back analysis of fracture evolution in multi-cracked solids using boundary element method[J]. International Journal of Fracture, 1999, 98(3/4): 225–241. doi: 10.1023/A:1018660600546
|
[7] |
DENDA M, DONG Y F. Complex variable approach to the BEM for multiple crack problems[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 141(3/4): 247–264.
|
[8] |
BUDYN E, ZI G, MOËS N, et al. A method for multiple crack growth in brittle materials without remeshing[J]. International Journal for Numerical Methods in Engineering, 2004, 61(10): 1741–1770. doi: 10.1002/nme.1130
|
[9] |
ZHOU X P, CHEN J W. Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints[J]. Engineering Geology, 2019, 250: 65–88. doi: 10.1016/j.enggeo.2019.01.012
|
[10] |
WANG Y T, ZHOU X P, WANG Y, et al. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids[J]. International Journal of Solids and Structures, 2018, 134: 89–115. doi: 10.1016/j.ijsolstr.2017.10.022
|
[11] |
AZADI H, KHOEI A R. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2011, 85(8): 1017–1048. doi: 10.1002/nme.3002
|
[12] |
ZHOU X P, FU L, QIAN Q H. A 2D novel non-local lattice bond model for initiation and propagation of cracks in rock materials[J]. Engineering Analysis with Boundary Elements, 2021, 126: 181–199. doi: 10.1016/j.enganabound.2021.03.002
|
[13] |
ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097–1114. doi: 10.1007/s00603-014-0627-4
|
[14] |
JIA Z M, ZHOU X P, BERTO F. Compressive-shear fracture model of the phase-field method coupled with a modified Hoek–Brown criterion[J]. International Journal of Fracture, 2021, 229(2): 161–184. doi: 10.1007/s10704-021-00546-7
|
[15] |
XU D D, WU A Q, LI C. A linearly-independent higher-order extended numerical manifold method and its application to multiple crack growth simulation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(6): 1256–1263. doi: 10.1016/j.jrmge.2019.02.007
|
[16] |
石路杨, 余天堂. 多裂纹扩展的扩展有限元法分析[J]. 岩土力学, 2014, 35(1): 263–272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm
SHI Lu-yang, YU Tian-tang. Analysis of multiple crack growth using extended finite element method[J]. Rock and Soil Mechanics, 2014, 35(1): 263–272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm
|
[17] |
BARBIERI E, PETRINIC N, MEO M, et al. A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity[J]. International Journal for Numerical Methods in Engineering, 2012, 90(2): 177–195. doi: 10.1002/nme.3313
|
[18] |
RABCZUK T, BORDAS S, ZI G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics[J]. Computational Mechanics, 2007, 40(3): 473–495. doi: 10.1007/s00466-006-0122-1
|
[19] |
YAU J F, WANG S S, CORTEN H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. Journal of Applied Mechanics, 1980, 47(2): 335–341. doi: 10.1115/1.3153665
|
[20] |
SHIH C F, ASARO R J. Elastic-plastic analysis of cracks on bimaterial interfaces: part Ⅰ—small scale yielding[J]. Journal of Applied Mechanics, 1988, 55(2): 299–316. doi: 10.1115/1.3173676
|
[21] |
ERDOGAN F, SIH G C. Closure to "discussion of 'on the crack extension in plates under plane loading and transverse shear'"[J]. Journal of Basic Engineering, 1963, 85(4): 527. doi: 10.1115/1.3656899
|
[22] |
ZHOU X P, JIA Z M, WANG L F. A field-enriched finite element method for brittle fracture in rocks subjected to mixed mode loading[J]. Engineering Analysis with Boundary Elements, 2021, 129: 105–124. doi: 10.1016/j.enganabound.2021.04.023
|
[23] |
SUKUMAR N, PRÉVOST J H. Modeling quasi-static crack growth with the extended finite element method Part Ⅰ: computer implementation[J]. International Journal of Solids and Structures, 2003, 40(26): 7513–7537. doi: 10.1016/j.ijsolstr.2003.08.002
|
[24] |
MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
|
[25] |
刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582–590. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm
LIU Feng, ZHENG Hong, LI Chun-guang. The nmm-based efg method and simulation of crack propagation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm
|
[26] |
PALUSZNY A, MATTHÄI S K. Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media[J]. International Journal of Solids and Structures, 2009, 46(18/19): 3383–3397.
|
[27] |
CIVELEK M B, ERDOGAN F. Crack problems for a rectangular plate and an infinite strip[J]. International Journal of Fracture, 1982, 19(2): 139–159. doi: 10.1007/BF00016570
|