• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHOU Xiao-ping, JIA Zhi-ming. Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 988-996. DOI: 10.11779/CJGE202206002
Citation: ZHOU Xiao-ping, JIA Zhi-ming. Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 988-996. DOI: 10.11779/CJGE202206002

Field-enriched finite element method for numerical simulation of initiation, propagation and coalescence of multiple cracks

More Information
  • Received Date: July 11, 2021
  • Available Online: September 22, 2022
  • The study on the mechanical response and cracking behaviors of brittle rock materials with multiple cracks is of vital significance for the design and stability analysis of rock engineering structures. A field-enriched finite element method (FE-FEM) is proposed to study the evolution behaviors of multiple cracks in rock materials, including crack initiation, propagation and coalescence. The solutions to the crack coalescence problem during simulation are proposed. The field-enriched finite element method can directly deal with the complex multiple crack problem, while the extra enriched function needs to be introduced in the extended finite element method (XFEM). The analytical results of the present numerical examples demonstrate that the proposed numerical method has the capability to handle complex multiple crack propagation and coalescence.
  • [1]
    FREIJ-AYOUB R, DYSKIN A V, GALYBIN A N. The dislocation approximation for calculating crack interaction[J]. International Journal of Fracture, 1997, 86(4): 57–62.
    [2]
    RYBACZUK M, STOPPEL P. The fractal growth of fatigue defects in materials[J]. International Journal of Fracture, 2000, 103(1): 71–94. doi: 10.1023/A:1007635717332
    [3]
    CHEN Y Z. General case of multiple crack problems in an infinite plate[J]. Engineering Fracture Mechanics, 1984, 20(4): 591–597. doi: 10.1016/0013-7944(84)90034-1
    [4]
    CHENG H, ZHOU X P, ZHU J, et al. The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(9): 3481–3494. doi: 10.1007/s00603-016-0998-9
    [5]
    ZHANG J Z, ZHOU X P. AE event rate characteristics of flawed granite: from damage stress to ultimate failure[J]. Geophysical Journal International, 2020, 222(2): 795–814. doi: 10.1093/gji/ggaa207
    [6]
    CARPINTERI A, MONETTO I. Snap-back analysis of fracture evolution in multi-cracked solids using boundary element method[J]. International Journal of Fracture, 1999, 98(3/4): 225–241. doi: 10.1023/A:1018660600546
    [7]
    DENDA M, DONG Y F. Complex variable approach to the BEM for multiple crack problems[J]. Computer Methods in Applied Mechanics and Engineering, 1997, 141(3/4): 247–264.
    [8]
    BUDYN E, ZI G, MOËS N, et al. A method for multiple crack growth in brittle materials without remeshing[J]. International Journal for Numerical Methods in Engineering, 2004, 61(10): 1741–1770. doi: 10.1002/nme.1130
    [9]
    ZHOU X P, CHEN J W. Extended finite element simulation of step-path brittle failure in rock slopes with non-persistent en-echelon joints[J]. Engineering Geology, 2019, 250: 65–88. doi: 10.1016/j.enggeo.2019.01.012
    [10]
    WANG Y T, ZHOU X P, WANG Y, et al. A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids[J]. International Journal of Solids and Structures, 2018, 134: 89–115. doi: 10.1016/j.ijsolstr.2017.10.022
    [11]
    AZADI H, KHOEI A R. Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing[J]. International Journal for Numerical Methods in Engineering, 2011, 85(8): 1017–1048. doi: 10.1002/nme.3002
    [12]
    ZHOU X P, FU L, QIAN Q H. A 2D novel non-local lattice bond model for initiation and propagation of cracks in rock materials[J]. Engineering Analysis with Boundary Elements, 2021, 126: 181–199. doi: 10.1016/j.enganabound.2021.03.002
    [13]
    ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097–1114. doi: 10.1007/s00603-014-0627-4
    [14]
    JIA Z M, ZHOU X P, BERTO F. Compressive-shear fracture model of the phase-field method coupled with a modified Hoek–Brown criterion[J]. International Journal of Fracture, 2021, 229(2): 161–184. doi: 10.1007/s10704-021-00546-7
    [15]
    XU D D, WU A Q, LI C. A linearly-independent higher-order extended numerical manifold method and its application to multiple crack growth simulation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(6): 1256–1263. doi: 10.1016/j.jrmge.2019.02.007
    [16]
    石路杨, 余天堂. 多裂纹扩展的扩展有限元法分析[J]. 岩土力学, 2014, 35(1): 263–272. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm

    SHI Lu-yang, YU Tian-tang. Analysis of multiple crack growth using extended finite element method[J]. Rock and Soil Mechanics, 2014, 35(1): 263–272. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201401040.htm
    [17]
    BARBIERI E, PETRINIC N, MEO M, et al. A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity[J]. International Journal for Numerical Methods in Engineering, 2012, 90(2): 177–195. doi: 10.1002/nme.3313
    [18]
    RABCZUK T, BORDAS S, ZI G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics[J]. Computational Mechanics, 2007, 40(3): 473–495. doi: 10.1007/s00466-006-0122-1
    [19]
    YAU J F, WANG S S, CORTEN H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity[J]. Journal of Applied Mechanics, 1980, 47(2): 335–341. doi: 10.1115/1.3153665
    [20]
    SHIH C F, ASARO R J. Elastic-plastic analysis of cracks on bimaterial interfaces: part Ⅰ—small scale yielding[J]. Journal of Applied Mechanics, 1988, 55(2): 299–316. doi: 10.1115/1.3173676
    [21]
    ERDOGAN F, SIH G C. Closure to "discussion of 'on the crack extension in plates under plane loading and transverse shear'"[J]. Journal of Basic Engineering, 1963, 85(4): 527. doi: 10.1115/1.3656899
    [22]
    ZHOU X P, JIA Z M, WANG L F. A field-enriched finite element method for brittle fracture in rocks subjected to mixed mode loading[J]. Engineering Analysis with Boundary Elements, 2021, 129: 105–124. doi: 10.1016/j.enganabound.2021.04.023
    [23]
    SUKUMAR N, PRÉVOST J H. Modeling quasi-static crack growth with the extended finite element method Part Ⅰ: computer implementation[J]. International Journal of Solids and Structures, 2003, 40(26): 7513–7537. doi: 10.1016/j.ijsolstr.2003.08.002
    [24]
    MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
    [25]
    刘丰, 郑宏, 李春光. 基于NMM的EFG方法及其裂纹扩展模拟[J]. 力学学报, 2014, 46(4): 582–590. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm

    LIU Feng, ZHENG Hong, LI Chun-guang. The nmm-based efg method and simulation of crack propagation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 582–590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201404012.htm
    [26]
    PALUSZNY A, MATTHÄI S K. Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media[J]. International Journal of Solids and Structures, 2009, 46(18/19): 3383–3397.
    [27]
    CIVELEK M B, ERDOGAN F. Crack problems for a rectangular plate and an infinite strip[J]. International Journal of Fracture, 1982, 19(2): 139–159. doi: 10.1007/BF00016570

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return