• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Tao, ZHAO Hongyang, WENG Bohang, HUANG Xiaoji, ZHANG Zhongyu. Experimental study on effects of shape and content of fine particles on strength of calcareous mixed sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1517-1525. DOI: 10.11779/CJGE20220535
Citation: LI Tao, ZHAO Hongyang, WENG Bohang, HUANG Xiaoji, ZHANG Zhongyu. Experimental study on effects of shape and content of fine particles on strength of calcareous mixed sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1517-1525. DOI: 10.11779/CJGE20220535

Experimental study on effects of shape and content of fine particles on strength of calcareous mixed sand

More Information
  • Received Date: May 04, 2022
  • Available Online: February 23, 2023
  • In order to study the influences of different contents and shapes of fine particle on the mechanical properties of calcareous mixed sand, the angular quartz powder and round glass beads are used as the fine particle materials and mixed with the calcareous sand in different proportions, and the strength characteristics and crushing characteristics of the calcareous mixed sand are studied and analyzed through the ring shear tests. The results show that the softening characteristics of the two kinds of mixed sand are obvious in the medium density state. The softening coefficient increases first and then decreases with the increase of the fine content, and reaches the maximum value when the fine content is 10%. The softening coefficient of the samples containing the glass beads is larger when the fine content is the same. The apparent cohesion of the calcareous sand is obvious and decreases with the increase of the fine content, and the decreasing trend of the samples containing the glass beads is obviously larger than that of the samples containing the quartz powder because of their lower embedding and biting capability. The deformation of the pure calcareous sand appears in the form of dilatancy, and with the increase of the content of the fine particle, the shear shrinkage of the mixed sand gradually increases, the peak strength and relative breakage rate gradually decrease, and the change of the mixed sand containing the glass beads is more significant.
  • [1]
    陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200509007.htm

    CHEN Haiyang, WANG Ren, LI Jianguo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200509007.htm
    [2]
    王新志, 王星, 刘海峰, 等. 珊瑚礁地基工程特性现场试验研究[J]. 岩土力学, 2017, 38(7): 2065-2070, 2079. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707029.htm

    WANG Xinzhi, WANG Xing, LIU Haifeng, et al. Field test study of engineering behaviors of coral reef foundation[J]. Rock and Soil Mechanics, 2017, 38(7): 2065-2070, 2079. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707029.htm
    [3]
    马成昊, 朱长歧, 刘海峰, 等. 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm

    MA Chenghao, ZHU Changqi, LIU Haifeng, et al. State-of-the-art review of research on the particle shape of soil[J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm
    [4]
    张晨阳, 谌民, 胡明鉴, 等. 细颗粒组分含量对钙质砂抗剪强度的影响[J]. 岩土力学, 2019, 40(增刊1): 195-202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm

    ZHANG Chenyang, CHEN Min, HU Mingjian, et al. Effect of fine particles content on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(S1): 195-202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2019S1029.htm
    [5]
    黄宏翔, 陈育民, 王建平, 等. 钙质砂抗剪强度特性的环剪试验[J]. 岩土力学, 2018, 39(6): 2082-2088. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm

    HUANG Hongxiang, CHEN Yumin, WANG Jianping, et al. Ring shear tests on shear strength of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(6): 2082-2088. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806021.htm
    [6]
    RUI S J, GUO Z, SI T L, et al. Effect of particle shape on the liquefaction resistance of calcareous sands[J]. Soil Dynamics and Earthquake Engineering, 2020, 137: 106302. doi: 10.1016/j.soildyn.2020.106302
    [7]
    WANG S, LEI X W, MENG Q S, et al. Influence of particle shape on the density and compressive performance of calcareous sand[J]. KSCE Journal of Civil Engineering, 2020, 24(1): 49-62. doi: 10.1007/s12205-020-0145-8
    [8]
    COOP M R, SORENSEN K K, BODAS FREITAS T, et al. Particle breakage during shearing of a carbonate sand[J]. Géotechnique, 2004, 54(3): 157-163. doi: 10.1680/geot.2004.54.3.157
    [9]
    汪轶群, 洪义, 国振, 等. 南海钙质砂宏细观破碎力学特性[J]. 岩土力学, 2018, 39(1): 199-206, 215. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801025.htm

    WANG Yiqun, HONG Yi, GUO Zhen, et al. Micro-and macro-mechanical behavior of crushable calcareous sand in South China Sea[J]. Rock and Soil Mechanics, 2018, 39(1): 199-206, 215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801025.htm
    [10]
    王国忠. 南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用[J]. 古地理学报, 2001, 3(2): 47-54. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200102007.htm

    WANG Guozhong. Mixed sedimentation of recent reefoid carbonates and terrigenous clastics in the north continental shelf of the South China Sea[J]. Journal of Palaeogeography, 2001, 3(2): 47-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200102007.htm
    [11]
    李小刚, 朱长歧, 崔翔, 等. 含碳酸盐混合砂的三轴剪切试验研究[J]. 岩土力学, 2020, 41(1): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001015.htm

    LI Xiaogang, ZHU Changqi, CUI Xiang, et al. Experimental study of triaxial shear characteristics of carbonate mixed sand[J]. Rock and Soil Mechanics, 2020, 41(1): 123-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202001015.htm
    [12]
    LADE P V, YAMAMURO J A. Evaluation of static liquefaction potential of silty sand slopes[J]. Canadian Geotechnical Journal, 2011, 48(2): 247-264.
    [13]
    WANG Y, WANG Y L, WANG Y, et al. Study of effects of fines content on liquefaction properties of sand[C]// GeoShanghai International Conference 2010. June 3-5, 2010, Shanghai, China. Reston, VA, USA: American Society of Civil Engineers, 2010: 272-277.
    [14]
    MONKUL M M, ETMINAN E, ŞENOL A. Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt[J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 185-197.
    [15]
    李涛, 唐小微. 黏粒和粉粒的共存对砂土静动力液化影响的试验研究[J]. 岩土工程学报, 2019, 41(增刊2): 169-172. doi: 10.11779/CJGE2019S2043

    LI Tao, TANG Xiaowei. Experimental study on effect of coexistence of clay and silt on static and dynamic liquefaction of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 169-172. (in Chinese) doi: 10.11779/CJGE2019S2043
    [16]
    MONKUL M M, ETMINAN E, ŞENOL A. Coupled influence of content, gradation and shape characteristics of silts on static liquefaction of loose silty sands[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 12-26.
    [17]
    YANG J, WEI L M. Collapse of loose sand with the addition of fines: the role of particle shape[J]. Géotechnique, 2012, 62(12): 1111-1125.
    [18]
    WEI L M, YANG J. On the role of grain shape in static liquefaction of sand–fines mixtures[J]. Géotechnique, 2014, 64(9): 740-745.
    [19]
    CAVARRETTA I, COOP M, O'SULLIVAN C. The influence of particle characteristics on the behaviour of coarse grained soils[J]. Géotechnique, 2010, 60(6): 413-423.
    [20]
    CLAYTON C R I, ABBIREDDY C O R, SCHIEBEL R. A method of estimating the form of coarse particulates[J]. Géotechnique, 2009, 59(6): 493-501.
    [21]
    KANDASAMI R K, MURTHY T G. Manifestation of particle morphology on the mechanical behaviour of granular ensembles[J]. Granular Matter, 2017, 19(2): 21.
    [22]
    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602.
    [23]
    YANG J, LUO X D. Exploring the relationship between critical state and particle shape for granular materials[J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 196-213.
    [24]
    王海波, 吴琪, 杨平. 细粒含量对饱和砂类土液化强度的影响[J]. 岩土力学, 2018, 39(8): 2771-2779. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808008.htm

    WANG Haibo, WU Qi, YANG Ping. Effect of fines content on liquefaction resistance of saturated sandy soils[J]. Rock and Soil Mechanics, 2018, 39(8): 2771-2779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808008.htm
    [25]
    王新志, 翁贻令, 王星, 等. 钙质土颗粒咬合作用机制[J]. 岩土力学, 2018, 39(9): 3113-3120. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809003.htm

    WANG Xinzhi, WENG Yiling, WANG Xing, et al. Interlocking mechanism of calcareous soil[J]. Rock and Soil Mechanics, 2018, 39(9): 3113-3120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201809003.htm
    [26]
    LIU X Y, LIU E L, ZHANG D, et al. Study on effect of coarse-grained content on the mechanical properties of frozen mixed soils[J]. Cold Regions Science and Technology, 2019, 158: 237-251.
    [27]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192.
  • Cited by

    Periodical cited type(11)

    1. 蔺云宏,郝云龙,李明宇,田帅,常瑞成,刘新新. 基坑开挖引起下卧地铁盾构隧道变形的统计与预测方法研究. 河南科学. 2025(03): 337-346 .
    2. 张毅. 软弱地层下的基坑支护方案比选. 山西建筑. 2024(17): 97-100 .
    3. 王伟,邓松峰. 深厚软土区邻近地铁深基坑工程关键技术研究. 江苏建筑. 2024(05): 120-126 .
    4. 刘朝阳,蒋凯,梁禹. 基于Kerr地基模型的覆土荷载引起既有装配式地铁车站沉降分析. 现代隧道技术. 2024(05): 71-78 .
    5. 贺旭. 软弱地层基坑开挖支护方案比选研究. 铁道建筑技术. 2023(05): 100-104+125 .
    6. 张继新. 浅埋扩挖隧道变形处理技术分析. 交通世界. 2023(15): 138-140 .
    7. 邓彬,张磊,郑鹏鹏,陈保国,邹顺清. 深基坑开挖与内支撑调节对邻近沉井影响规律试验研究. 建筑科学与工程学报. 2023(05): 174-182 .
    8. 马少俊,王乔坎,苏凤阳,徐建章,郑伟,陈思源. 邻地铁盾构隧道超长基坑支护技术——以杭州大会展中心基坑工程为例. 建筑科学. 2022(05): 179-186 .
    9. 王丽萍. 水平间距对涉水隧道土体变形影响的模拟分析. 黑龙江水利科技. 2022(08): 74-76+108 .
    10. 冯文刚. 涉水隧道开挖对土体沉降影响分析. 黑龙江水利科技. 2022(08): 89-92 .
    11. 祖华. 城市地铁隧道开挖及变形控制的数值模拟研究. 山西建筑. 2022(21): 135-137 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return