• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
DONG Jianhua, GUO Han, HE Penfei, WU Xiaolei. Mechanical properties of airbag frame ground beams for slope support[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1498-1508. DOI: 10.11779/CJGE20220524
Citation: DONG Jianhua, GUO Han, HE Penfei, WU Xiaolei. Mechanical properties of airbag frame ground beams for slope support[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1498-1508. DOI: 10.11779/CJGE20220524

Mechanical properties of airbag frame ground beams for slope support

More Information
  • Received Date: April 27, 2022
  • Available Online: February 23, 2023
  • In view of the slope instability caused by frequent natural disasters such as earthquakes and collapses, a new type of ground beam structure with airbag anchor frame which can quickly respond to rescue and relief work is proposed, and the working mechanism of the new structure is described. The stress characteristics of FRP and airbag are analyzed when the ground beam of airbag frame is loaded, and the method for the bearing capacity of the ground beam of airbag frame is given. Combined with the theory of pneumatic transmission and double-layer elastic foundation beam, the model for calculating the coordinated deformations of the airbag frame ground beams, bolts and soils is established, and the relevant method for the mechanical effects of the airbag frame ground beams at the construction stage and working stage of slope support is given. The results show that: (1) The bearing capacity of the airbag frame beam structure is mainly determined by the thickness of frame beam, the strength of plate, and the internal pressure and height of the airbag. Increasing the thickness of frame plate, the strength of plate, and the internal pressure and height of airbag can improve the bearing capacity of the structure. (2) The airbag frame beams for slope support have two stages: construction and working. The bending moments and shear forces at the working stage are larger than those at the construction stage, and the shear forces and bending moments of the frame beams at the foot of the slope rise greatly at the working stage, which should be considered as the most unfavorable factor in the design. (3) The support design should also comprehensively consider the support effects, structural bearing capacity and economy, and give the design scheme to ensure the reliability, timeliness and economy of the structure in the actual rescue and disaster relief. The research results may provide a theoretical basis and guidance for the design and application of the new structure in rapid slope support.
  • [1]
    单斌, 熊熊, 郑勇, 等. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系[J]. 中国科学: 地球科学, 2013, 43(6): 1002-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm

    SHAN Bin, XIONG Xiong, ZHENG Yong, et al. Changes of peripheral fault stress caused by Lushan earthquake in 2013 and its relationship with Wenchuan earthquake in 2008[J]. Scientia Sinica (Terrae), 2013, 43(6): 1002-1009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306008.htm
    [2]
    邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征[J]. 中国科学(D辑: 地球科学), 2002, 32(12): 1020-1030, 1057. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm

    DENG Qidong, ZHANG Peizhen, RAN Yongkang, et al. Basic characteristics of active structures in China[J]. Science in China, SerD, 2002, 32(12): 1020-1030, 1057. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200212006.htm
    [3]
    史培军, 张欢. 中国应对巨灾的机制: 汶川地震的经验[J]. 清华大学学报(哲学社会科学版), 2013, 28(3): 96-113, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-QHDZ201303014.htm

    SHI Peijun, ZHANG Huan. China's response to the catastrophe: the experience of Wenchuan earthquake[J]. Journal of Tsinghua University (Philosophy and Social Sciences), 2013, 28(3): 96-113, 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHDZ201303014.htm
    [4]
    徐玖平, 卢毅. 地震救援·恢复·重建的组织技术及理论模式[J]. 系统工程理论与实践, 2011, 31(增刊1): 107-119. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL2011S1017.htm

    XU Jiuping, LU Yi. Organizational technology and theoretical pattern of earthquake rescue, recovery and reconstruction[J]. Systems Engineering-Theory & Practice, 2011, 31(S1): 107-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL2011S1017.htm
    [5]
    张磊. 面向地震灾情时序变化的应急救援物资需求动态预测研究[J]. 灾害学, 2018, 33(3): 161-164. doi: 10.3969/j.issn.1000-811X.2018.03.031

    ZHANG Lei. Research on dynamic demand prediction of emergency relief materials oriented to the temporal and spatial change of earthquake disaster losses[J]. Journal of Catastrophology, 2018, 33(3): 161-164. (in Chinese) doi: 10.3969/j.issn.1000-811X.2018.03.031
    [6]
    何琳, 赵应龙. 舰船用高内压气囊隔振器理论与设计[J]. 振动工程学报, 2013, 26(6): 886-894. doi: 10.3969/j.issn.1004-4523.2013.06.011

    HE Lin, ZHAO Yinglong. Theory and design of high-pressure and heavy-duty air spring for naval vessels[J]. Journal of Vibration Engineering, 2013, 26(6): 886-894. (in Chinese) doi: 10.3969/j.issn.1004-4523.2013.06.011
    [7]
    陈静, 闫澍旺, 孙立强, 等. 隧道气囊在外压作用下的变形特性及试验验证[J]. 土木建筑与环境工程, 2018, 40(5): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805003.htm

    CHEN Jing, YAN Shuwang, SUN Liqiang, et al. Model test on deformation characteristics of large diameter airbag in tunnel under external pressure[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(5): 16-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201805003.htm
    [8]
    邹炳燕. 液压与气压传动[M]. 北京: 中国铁道出版社, 2020.

    ZOU Bingyan. Hydraulic and Pneumatic Transmission[M]. Beijing: China Railway Publishing House, 2020. (in Chinese)
    [9]
    LI Y W, NAHON M, SHARF I. Airship dynamics modeling: a literature review[J]. Progress in Aerospace Sciences, 2011, 47(3): 217-239. doi: 10.1016/j.paerosci.2010.10.001
    [10]
    张利国, 张嘉钟, 贾力萍, 等. 空气弹簧的现状及其发展[J]. 振动与冲击, 2007, 26(2): 146-151, 183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200702035.htm

    ZHANG Liguo, ZHANG Jiazhong, JIA Liping, et al. Future and development of air springs[J]. Journal of Vibration and Shock, 2007, 26(2): 146-151, 183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200702035.htm
    [11]
    廖航, 竺梅芳, 雷江利, 等. 大质量航天器气囊着陆缓冲过程研究[J]. 航天返回与遥感, 2020, 41(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202001005.htm

    LIAO Hang, ZHU Meifang, LEI Jiangli, et al. Airbag landing research of massive spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(1): 28-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202001005.htm
    [12]
    东南大学, 天津大学, 同济大学. 混凝土结构学习指导[M]. 3版. 北京: 中国建筑工业出版社, 2020.

    Southeast University, Zhejiang University, Hunan University. Learning Guidance of Concrete Structure[M]. 3rd ed. Beijing: China Architecture & Building Press, 2020. (in Chinese)
    [13]
    李怀志. 预应力锚索格构梁受力分析[D]. 贵阳: 贵州大学, 2009.

    LI Huaizhi. Stress Analysis of Prestressed Anchor Cable Lattice Beam[D]. Guiyang: Guizhou University, 2009. (in Chinese)
    [14]
    周勇, 朱彦鹏. 框架预应力锚杆柔性支护结构坡面水平位移影响因素[J]. 岩土工程学报, 2011, 33(3): 470-476. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13964.shtml

    ZHOU Yong, ZHU Yanpeng. Influencing factors of horizontal displacement of wall facing of grillage flexible supporting structure with prestressed anchors[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 470-476. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract13964.shtml
    [15]
    SELVADURAI A P S. Elastic analysis of soil-foundation interaction[M]. New York: distributors for the United States and Canada, Elsevier-North Holland, 1979.
    [16]
    朱彦鹏, 董建华. 柔性支挡结构的静动力稳定性分析[M]. 北京: 科学出版社, 2015.

    ZHU Yanpeng, DONG Jianhua. Static and Dynamic Stability Analysis of Flexible Retaining Structure[M]. Beijing: Science Press, 2015. (in Chinese)
    [17]
    梁瑶, 周德培, 赵刚. 预应力锚索框架梁支护结构的设计[J]. 岩石力学与工程学报, 2006, 25(2): 318-322. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200602016.htm

    LIANG Yao, ZHOU Depei, ZHAO Gang. Design of support of frame beam and prestressed anchor[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(2): 318-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200602016.htm
    [18]
    王其昌. 铁路新型轨下基础应力计算[M]. 北京: 中国铁道出版社, 1987.

    WANG Qichang. Stress Calculation of Foundation under New Railway Track[M]. Beijing: China Railway Publishing House, 1987. (in Chinese)
    [19]
    建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Technical Code for Building Slope Engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)
    [20]
    顾晓鲁. 地基与基础[M]. 3版. 北京: 中国建筑工业出版社, 2003.

    GU Xiaolu. Foundation and Foundation[M]. 3rd ed. Beijing: China Architecture & Building Press, 2003. (in Chinese)
    [21]
    POLI︠A︡NIN A D, ZAĬT︠S︡EV V F. Handbook of Exact Solutions for Ordinary Differential Equations[M]. 2nd ed. Boca Raton: Chapman & Hall/CRC, 2002.
    [22]
    张兴龙. 纤维增强复合材料结构宏细观多尺度力学性能研究及应用[D]. 西安: 西安电子科技大学, 2015.

    ZHANG Xinglong. The Macro and Micro Mechanical Properties and Application of the Fiber Reinforced Composite[D]. Xi'an: Xidian University, 2015. (in Chinese)
  • Other Related Supplements

  • Cited by

    Periodical cited type(4)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 马乾玮,张洁雅,曹家玮,董晓强. 基于电阻率表征的固化镉污染土的力学特性. 太原理工大学学报. 2024(05): 823-831 .
    3. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    4. 崔雪,田斌,卢晓春,熊勃勃,冯程鑫. 基于电阻率的滑坡土体含水率贝叶斯LSTM网络模型预测研究. 水电能源科学. 2022(03): 182-185 .

    Other cited types(15)

Catalog

    Article views (262) PDF downloads (84) Cited by(19)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return