Citation: | ZHANG Zhiguo, YE Tong, ZHU Zhengguo, PAN Y T, WU Zhongteng. Time-varying analysis of deterioration by chloride ion erosion for subsea tunnels under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1323-1332. DOI: 10.11779/CJGE20220513 |
[1] |
WANG H L, DAI J G, SUN X Y, et al. Characteristics of concrete cracks and their influence on chloride penetration[J]. Construction and Building Materials, 2016, 107(1): 216-225.
|
[2] |
王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10): 82-89. doi: 10.15951/j.tmgcxb.2021.10.009
WANG Shengnian, ZENG Junjie, FAN Zhihong. Analysis on durability of marine HPC based on long-term exposure experiment[J]. China Civil Engineering Journal, 2021, 54(10): 82-89. (in Chinese) doi: 10.15951/j.tmgcxb.2021.10.009
|
[3] |
FU Q, BU M X, ZHANG Z R, et al. Chloride ion transport performance of lining concrete under coupling the action of flowing groundwater and loading[J]. Cement and Concrete Composites, 2021, 123: 104166. doi: 10.1016/j.cemconcomp.2021.104166
|
[4] |
BAO J W, WANG L C. Combined effect of water and sustained compressive loading on chloride penetration into concrete[J]. Construction and Building Materials, 2017, 156: 708-718. doi: 10.1016/j.conbuildmat.2017.09.018
|
[5] |
LI W J, GUO L. A mechanical-diffusive peridynamics coupling model for meso-scale simulation of chloride penetration in concrete under loadings[J]. Construction and Building Materials, 2020, 241: 118021. doi: 10.1016/j.conbuildmat.2020.118021
|
[6] |
孙齐. 双掺聚丙烯及钢纤维管片结构的耐久性研究[D]. 成都: 西南交通大学, 2018.
SUN Qi. Study on Durability of Segments Mixed Polypropylene and Steel Fiber[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
|
[7] |
DURA CRETE. General Guidelines for Durability Design and Redesign[S]. Bruxelles: Dura Crete, 2000.
|
[8] |
VIOLETTA B. Life-365 service life prediction model[J]. Concrete International, 2002, 24(12): 53-57.
|
[9] |
韩兴博, 叶飞, 夏天晗, 等. 在役隧道环境侵蚀下管片承载能力概率劣化模型[J]. 中国公路学报, 2022, 35(1): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201005.htm
HAN Xingbo, YE Fei, XIA Tianhan, et al. Probability degradation models of bearing capacity of operating tunnel segments under environmental erosions[J]. China Journal of Highway and Transport, 2022, 35(1): 49-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201005.htm
|
[10] |
LI K F, LI C Q. Modeling hydroionic transport in cement-based porous materials under drying-wetting actions[J]. Journal of Applied Mechanics, 2013, 80(2): 020904. doi: 10.1115/1.4007907
|
[11] |
YU Z W, CHEN Y, LIU P, et al. Accelerated simulation of chloride ingress into concrete under drying–wetting alternation condition chloride environment[J]. Construction and Building Materials, 2015, 93: 205-213. doi: 10.1016/j.conbuildmat.2015.05.090
|
[12] |
SUN J. Durability problems of lining structures for Xiamen Xiang'an subsea tunnel in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(4): 289-301. doi: 10.3724/SP.J.1235.2011.00289
|
[13] |
何文正, 徐林生. 硫酸盐侵蚀作用下隧道衬砌时变力学行为研究[J]. 岩土工程学报, 2021, 43(6): 1010-1018. doi: 10.11779/CJGE202106004
HE Wenzheng, XU Linsheng. Time-dependent mechanical behavior of tunnel linings under sulfate attack[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1010-1018. (in Chinese) doi: 10.11779/CJGE202106004
|
[14] |
刘四进, 何川, 孙齐, 等. 腐蚀离子环境中盾构隧道衬砌结构侵蚀劣化机理[J]. 中国公路学报, 2017, 30(8): 125-133. doi: 10.3969/j.issn.1001-7372.2017.08.014
LIU Sijin, HE Chuan, SUN Qi, et al. Erosion degradation mechanism of shield tunnel lining structure in corrosive ion environment[J]. China Journal of Highway and Transport, 2017, 30(8): 125-133. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.014
|
[15] |
BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
|
[16] |
YING H W, ZHU C W, GONG X N. Tide-induced hydraulic response in a semi-infinite seabed with a subaqueous drained tunnel[J]. Acta Geotechnica, 2018, 13(1): 149-157. doi: 10.1007/s11440-017-0525-5
|
[17] |
SHOWKATI A, SALARI-RAD H, HAZRATI AGHCHAI M. Predicting long-term stability of tunnels considering rock mass weathering and deterioration of primary support[J]. Tunnelling and Underground Space Technology, 2021, 107: 103670. doi: 10.1016/j.tust.2020.103670
|
[18] |
刘昌, 张顶立, 张素磊, 等. 考虑围岩流变及衬砌劣化特性的隧道长期服役性能解析[J]. 岩土力学, 2021, 42(10): 2795-2807. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110019.htm
LIU Chang, ZHANG Dingli, ZHANG Sulei, et al. Analytical solution of the long-term service performance of tunnel considering surrounding rock rheology and lining deterioration characteristics[J]. Rock and Soil Mechanics, 2021, 42(10): 2795-2807. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110019.htm
|
[19] |
田浩. 长期浸泡下混凝土硫酸盐传输-劣化机理研究[D]. 深圳: 深圳大学, 2015.
TIAN Hao. Study on Sulfate Transmission-Degradation Mechanism of Concrete under Long-Term Soaking[D]. Shenzhen: Shenzhen University, 2015. (in Chinese)
|
[20] |
WANG G, WU Q, ZHOU H, et al. Diffusion of chloride ion in coral aggregate seawater concrete under marine environment [J]. Construction and Building Materials, 2021, 284: 122821. doi: 10.1016/j.conbuildmat.2021.122821
|
[21] |
YOO J H, LEE H S, ISMAIL M A. An analytical study on the water penetration and diffusion into concrete under water pressure[J]. Construction and Building Materials, 2011, 25(1): 99-108. doi: 10.1016/j.conbuildmat.2010.06.052
|
[22] |
王小雯. 波浪作用下饱和砂质海床液化机理研究[D]. 北京: 清华大学, 2017.
WANG Xiaowen. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed[D]. Beijing: Tsinghua University, 2017. (in Chinese)
|
[23] |
盛杰. 海洋大气环境下TRC加固RC梁受弯时变性能[J]. 建筑结构学报, 2021, 42(增刊1): 284-290. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1032.htm
SHENG Jie. Time-dependent behavior of RC beams strengthened with TRC in marine atmosphere environment[J]. Journal of Building Structures, 2021, 42(S1): 284-290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1032.htm
|
[24] |
GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Journal of Structural Engineering, 2010, 136(12): 1497-1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260
|
[25] |
混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
Code for Design of Concrete Structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
|
[26] |
YIN R R, LI B C, ZHANG C C, et al. The permeability of SO42− and Cl− in concrete under the effect of seepage flow and stress fields[J]. Construction and Building Materials, 2018, 162: 697-703. doi: 10.1016/j.conbuildmat.2017.12.071
|
[27] |
唐雄俊, 毛优达, 孙州. 甬舟铁路金塘海底隧道结构健康监测方案研究[J]. 铁道标准设计, 2021, 65(10): 189-194. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202110037.htm
TANG Xiongjun, MAO Youda, SUN Zhou. Research on structural health monitoring scheme of Jintang subsea tunnel on Yongzhou railway[J]. Railway Standard Design, 2021, 65(10): 189-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202110037.htm
|
1. |
张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
![]() | |
2. |
高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
![]() | |
3. |
王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
![]() | |
4. |
朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
![]() | |
5. |
徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
![]() | |
6. |
耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
![]() | |
7. |
蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
![]() | |
8. |
付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 .
![]() | |
9. |
郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
![]() | |
10. |
袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
![]() | |
11. |
赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
![]() | |
12. |
杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
![]() | |
13. |
胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
![]() | |
14. |
张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
![]() | |
15. |
张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 .
![]() | |
16. |
陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
![]() | |
17. |
贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
![]() | |
18. |
黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
![]() | |
19. |
申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 .
![]() |