• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhiguo, YE Tong, ZHU Zhengguo, PAN Y T, WU Zhongteng. Time-varying analysis of deterioration by chloride ion erosion for subsea tunnels under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1323-1332. DOI: 10.11779/CJGE20220513
Citation: ZHANG Zhiguo, YE Tong, ZHU Zhengguo, PAN Y T, WU Zhongteng. Time-varying analysis of deterioration by chloride ion erosion for subsea tunnels under wave loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1323-1332. DOI: 10.11779/CJGE20220513

Time-varying analysis of deterioration by chloride ion erosion for subsea tunnels under wave loads

More Information
  • Received Date: April 26, 2022
  • Available Online: February 23, 2023
  • The subsea tunnel in shallow water is in a complex fluctuating hydraulic environment. The existing theoretical researches generally reckon in the corrosion effects of free diffusion of chloride ions on the tunnel linings in the hydrostatic environment, and seldom consider the promotion effects of ocean wave force on the corrosion of the lining structures. Firstly, the wave pressure on the seabed surface is determined by using the Stokes second-order wave theory which is suitable for the shallow water, and the hydraulic response around the tunnel linings is obtained based on the Biot consolidation theory. Then, the improved Fick's second law is used to consider the diffusion of chloride ions driven by the water pressure and concentration gradient, and the exponential strength deterioration model is used to describe the deterioration effects of lining concrete during service time. Finally, considering with the erosion effects of chloride ions under wave action, the bearing capacity of the linings of the subsea tunnel is calculated. The theoretical solution for this study is compared with the numerical models and existing test results, and the solutions are in good agreement. The results show that when the promoting effects of the dynamic wave pressure on chloride ion seepage in lining concrete are neglected, the diffusion velocity of chloride ions in lining concrete will be underestimated. With the increase of wave period, the maximum depth of erosion infiltration of chloride ions inside the lining increases significantly. Without considering the deterioration effects of lining strength, the service life of tunnel structures will be obviously overestimated, which is not conducive to the safety reserve of subsea tunnel during service.
  • [1]
    WANG H L, DAI J G, SUN X Y, et al. Characteristics of concrete cracks and their influence on chloride penetration[J]. Construction and Building Materials, 2016, 107(1): 216-225.
    [2]
    王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10): 82-89. doi: 10.15951/j.tmgcxb.2021.10.009

    WANG Shengnian, ZENG Junjie, FAN Zhihong. Analysis on durability of marine HPC based on long-term exposure experiment[J]. China Civil Engineering Journal, 2021, 54(10): 82-89. (in Chinese) doi: 10.15951/j.tmgcxb.2021.10.009
    [3]
    FU Q, BU M X, ZHANG Z R, et al. Chloride ion transport performance of lining concrete under coupling the action of flowing groundwater and loading[J]. Cement and Concrete Composites, 2021, 123: 104166. doi: 10.1016/j.cemconcomp.2021.104166
    [4]
    BAO J W, WANG L C. Combined effect of water and sustained compressive loading on chloride penetration into concrete[J]. Construction and Building Materials, 2017, 156: 708-718. doi: 10.1016/j.conbuildmat.2017.09.018
    [5]
    LI W J, GUO L. A mechanical-diffusive peridynamics coupling model for meso-scale simulation of chloride penetration in concrete under loadings[J]. Construction and Building Materials, 2020, 241: 118021. doi: 10.1016/j.conbuildmat.2020.118021
    [6]
    孙齐. 双掺聚丙烯及钢纤维管片结构的耐久性研究[D]. 成都: 西南交通大学, 2018.

    SUN Qi. Study on Durability of Segments Mixed Polypropylene and Steel Fiber[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [7]
    DURA CRETE. General Guidelines for Durability Design and Redesign[S]. Bruxelles: Dura Crete, 2000.
    [8]
    VIOLETTA B. Life-365 service life prediction model[J]. Concrete International, 2002, 24(12): 53-57.
    [9]
    韩兴博, 叶飞, 夏天晗, 等. 在役隧道环境侵蚀下管片承载能力概率劣化模型[J]. 中国公路学报, 2022, 35(1): 49-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201005.htm

    HAN Xingbo, YE Fei, XIA Tianhan, et al. Probability degradation models of bearing capacity of operating tunnel segments under environmental erosions[J]. China Journal of Highway and Transport, 2022, 35(1): 49-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201005.htm
    [10]
    LI K F, LI C Q. Modeling hydroionic transport in cement-based porous materials under drying-wetting actions[J]. Journal of Applied Mechanics, 2013, 80(2): 020904. doi: 10.1115/1.4007907
    [11]
    YU Z W, CHEN Y, LIU P, et al. Accelerated simulation of chloride ingress into concrete under drying–wetting alternation condition chloride environment[J]. Construction and Building Materials, 2015, 93: 205-213. doi: 10.1016/j.conbuildmat.2015.05.090
    [12]
    SUN J. Durability problems of lining structures for Xiamen Xiang'an subsea tunnel in China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(4): 289-301. doi: 10.3724/SP.J.1235.2011.00289
    [13]
    何文正, 徐林生. 硫酸盐侵蚀作用下隧道衬砌时变力学行为研究[J]. 岩土工程学报, 2021, 43(6): 1010-1018. doi: 10.11779/CJGE202106004

    HE Wenzheng, XU Linsheng. Time-dependent mechanical behavior of tunnel linings under sulfate attack[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1010-1018. (in Chinese) doi: 10.11779/CJGE202106004
    [14]
    刘四进, 何川, 孙齐, 等. 腐蚀离子环境中盾构隧道衬砌结构侵蚀劣化机理[J]. 中国公路学报, 2017, 30(8): 125-133. doi: 10.3969/j.issn.1001-7372.2017.08.014

    LIU Sijin, HE Chuan, SUN Qi, et al. Erosion degradation mechanism of shield tunnel lining structure in corrosive ion environment[J]. China Journal of Highway and Transport, 2017, 30(8): 125-133. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.08.014
    [15]
    BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164. doi: 10.1063/1.1712886
    [16]
    YING H W, ZHU C W, GONG X N. Tide-induced hydraulic response in a semi-infinite seabed with a subaqueous drained tunnel[J]. Acta Geotechnica, 2018, 13(1): 149-157. doi: 10.1007/s11440-017-0525-5
    [17]
    SHOWKATI A, SALARI-RAD H, HAZRATI AGHCHAI M. Predicting long-term stability of tunnels considering rock mass weathering and deterioration of primary support[J]. Tunnelling and Underground Space Technology, 2021, 107: 103670. doi: 10.1016/j.tust.2020.103670
    [18]
    刘昌, 张顶立, 张素磊, 等. 考虑围岩流变及衬砌劣化特性的隧道长期服役性能解析[J]. 岩土力学, 2021, 42(10): 2795-2807. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110019.htm

    LIU Chang, ZHANG Dingli, ZHANG Sulei, et al. Analytical solution of the long-term service performance of tunnel considering surrounding rock rheology and lining deterioration characteristics[J]. Rock and Soil Mechanics, 2021, 42(10): 2795-2807. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110019.htm
    [19]
    田浩. 长期浸泡下混凝土硫酸盐传输-劣化机理研究[D]. 深圳: 深圳大学, 2015.

    TIAN Hao. Study on Sulfate Transmission-Degradation Mechanism of Concrete under Long-Term Soaking[D]. Shenzhen: Shenzhen University, 2015. (in Chinese)
    [20]
    WANG G, WU Q, ZHOU H, et al. Diffusion of chloride ion in coral aggregate seawater concrete under marine environment [J]. Construction and Building Materials, 2021, 284: 122821. doi: 10.1016/j.conbuildmat.2021.122821
    [21]
    YOO J H, LEE H S, ISMAIL M A. An analytical study on the water penetration and diffusion into concrete under water pressure[J]. Construction and Building Materials, 2011, 25(1): 99-108. doi: 10.1016/j.conbuildmat.2010.06.052
    [22]
    王小雯. 波浪作用下饱和砂质海床液化机理研究[D]. 北京: 清华大学, 2017.

    WANG Xiaowen. Research on Mechanics of Wave-Induced Liquefaction in Saturated Sandy Seabed[D]. Beijing: Tsinghua University, 2017. (in Chinese)
    [23]
    盛杰. 海洋大气环境下TRC加固RC梁受弯时变性能[J]. 建筑结构学报, 2021, 42(增刊1): 284-290. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1032.htm

    SHENG Jie. Time-dependent behavior of RC beams strengthened with TRC in marine atmosphere environment[J]. Journal of Building Structures, 2021, 42(S1): 284-290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB2021S1032.htm
    [24]
    GHOSH J, PADGETT J E. Aging considerations in the development of time-dependent seismic fragility curves[J]. Journal of Structural Engineering, 2010, 136(12): 1497-1511. doi: 10.1061/(ASCE)ST.1943-541X.0000260
    [25]
    混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.

    Code for Design of Concrete Structures: GB 50010—2010[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese)
    [26]
    YIN R R, LI B C, ZHANG C C, et al. The permeability of SO42− and Cl in concrete under the effect of seepage flow and stress fields[J]. Construction and Building Materials, 2018, 162: 697-703. doi: 10.1016/j.conbuildmat.2017.12.071
    [27]
    唐雄俊, 毛优达, 孙州. 甬舟铁路金塘海底隧道结构健康监测方案研究[J]. 铁道标准设计, 2021, 65(10): 189-194. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202110037.htm

    TANG Xiongjun, MAO Youda, SUN Zhou. Research on structural health monitoring scheme of Jintang subsea tunnel on Yongzhou railway[J]. Railway Standard Design, 2021, 65(10): 189-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202110037.htm
  • Cited by

    Periodical cited type(19)

    1. 张伟丽,李明依,李俊,钱程,陈宗武. 基于MICP技术的固化黏土抗侵蚀性能研究. 安全与环境工程. 2025(01): 201-210+232 .
    2. 高瑜,邢家伟,王晓荣,韩红伟,樊促遥. 核磁共振作用下微生物矿化风沙土材料的微观孔隙. 科学技术与工程. 2025(05): 2066-2073 .
    3. 王东星,许凤丽,泮晓华,商武锋,吴章平,郭克诚. GGBS-MICP协同固化淤泥质砂土工程特性研究. 岩石力学与工程学报. 2025(05): 1349-1362 .
    4. 朱文羲,邓华锋,李建林,肖瑶,熊雨,程雷. 木质素磺酸钙增强花岗岩残积土微生物固化效果研究. 土木工程学报. 2024(03): 123-132 .
    5. 徐志平,贾卓龙,晏长根,王逸凡. 聚丙烯纤维加筋黄土边坡防护原位测试及改进策略. 人民黄河. 2024(04): 111-116 .
    6. 耿会岭,赵卫全,赵永刚,杨晓东,于凡. 生物诱导碳酸钙沉淀在改善土壤侵蚀中的应用. 水利水电技术(中英文). 2024(03): 11-23 .
    7. 蒋钊,彭劼,许鹏旭,卫仁杰,李亮亮. 微生物结合碳纤维加固钙质砂的高强度试验研究. 土木与环境工程学报(中英文). 2024(05): 64-73 .
    8. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    9. 郑宏扬,王瑞,刘宇佳,唐朝生. 基于生物碳化活性氧化镁技术抑制土体干缩开裂的试验研究. 高校地质学报. 2024(06): 705-713 .
    10. 袁童,雷学文,艾东,安然,陈昶,陈欣. 椰壳纤维-MICP复合改良膨胀土强度特性. 水利与建筑工程学报. 2023(03): 105-111 .
    11. 赵卫全,张银峰,李娜,耿会岭,严俊. 微生物改良膨胀土的胀缩性及耐水性试验研究. 中国水利水电科学研究院学报(中英文). 2023(04): 350-359 .
    12. 杜掀,郑涛,卢超波,杨庭伟,姜洪亮. 不同类型纤维对MICP处理钙质砂物理力学性能的影响. 西部交通科技. 2023(01): 60-63 .
    13. 胡其志,霍伟严,马强,陶高梁. MICP联合纤维加筋黄土的力学性能及水稳性研究. 人民长江. 2023(08): 227-232+248 .
    14. 张婧,杨四方,张宏,曹函,陆爱灵,唐卫平,廖梦飞. 碳中和背景下MICP技术深化与应用. 现代化工. 2023(11): 75-79+84 .
    15. 张建伟,赵聪聪,尹悦,石磊,边汉亮,韩智光. 紫外诱变产脲酶菌株加固粉土的试验研究. 岩土工程学报. 2023(12): 2500-2509 . 本站查看
    16. 陈欣,安然,汪亦显,陈昶. 胶结液浓度对MICP固化残积土力学性能影响及机理研究. 水利与建筑工程学报. 2023(06): 100-106+149 .
    17. 贺桂成,唐孟媛,李咏梅,李春光,张志军,伍玲玲. 改性黄麻纤维联合微生物胶结铀尾砂的抗渗性能试验研究. 岩土力学. 2023(12): 3459-3470 .
    18. 黄安国,何稼,邵应峰. EICP联合纤维加固边坡表层抗侵蚀试验研究. 河南科学. 2022(09): 1411-1421 .
    19. 申春妮,方祥位,胡丰慧,姚志华,李洋洋. 珊瑚砂地基中微生物珊瑚砂桩承载特性试验研究. 岩土工程学报. 2022(S1): 68-73 . 本站查看

    Other cited types(19)

Catalog

    Article views (556) PDF downloads (159) Cited by(38)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return