• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
CAO Li-qiang, CHEN Xiang-sheng, ZHANG Ding-li, SU Dong. Theoretical investigation of restraint effect of isolation piles on vertical ground displacements due to tunneling under the plane state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 916-925. DOI: 10.11779/CJGE202205015
Citation: CAO Li-qiang, CHEN Xiang-sheng, ZHANG Ding-li, SU Dong. Theoretical investigation of restraint effect of isolation piles on vertical ground displacements due to tunneling under the plane state[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 916-925. DOI: 10.11779/CJGE202205015

Theoretical investigation of restraint effect of isolation piles on vertical ground displacements due to tunneling under the plane state

More Information
  • Received Date: July 18, 2021
  • Available Online: September 22, 2022
  • As an efficient protective measure, the isolation piles are widely used in the control of tunneling-induced environmental effects in urban areas. Based on the two-stage concept, a vertical pile-soil interaction model that can consider the relative slip between the isolation pile and the soil (simulated by the pile shaft spring and the pile tip spring) is established. Based on this model and introducing the displacement compatibility condition, using the modified Loganathan-Poulos (L&P) formula and the Melan solution of the vertical displacement in a general form, the interaction forces between the isolation pile and the soil (i.e., the internal force of the springs) are solved. Using the superposition principle, the ground vertical displacements caused by tunnel excavation under the restraint of isolation piles are further solved. The results are verified by comparing with those of the existing analytical methods and field measured data. Based on the analytical results of the proposed model, the mechanical mechanism of the effects of the isolation piles on the ground vertical displacements is investigated. The studies have shown that the restraint effect of the isolation piles on soil can be divided into two parts, upward part and downward part. The combination of the upward and downward effects together drives the tunneling-induced ground vertical displacements along the depth direction to change from non-uniform state to a relatively uniform one. The spring stiffness of the pile shaft and pile tip determines the degreeof interaction between the pile and the soil. The smaller the stiffness, the smaller the interaction force, the greater the relative displacement between the pile and the soil, and the smaller the upward and downward restraint effects. The related research may provide theoretical guidance for the design and effect evaluation of isolation piles.
  • [1]
    雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. 岩土力学, 2010, 31(1): 223–228, 236. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001039.htm

    LEI Yong-sheng. Research on protective measures of City Wall and Bell Tower due to underneath crossing Xi'an Metro Line No. 2[J]. Rock and Soil Mechanics, 2010, 31(1): 223–228, 236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001039.htm
    [2]
    BILOTTA E, TAYLOR R N. Centrifuge modelling of tunnelling close to a diaphragm wall[J]. International Journal of Physical Modelling in Geotechnics, 2005, 5(1): 27–41. doi: 10.1680/ijpmg.2005.050103
    [3]
    BILOTTA E. Use of diaphragm walls to mitigate ground movements induced by tunnelling[J]. Géotechnique, 2008, 58(2): 143–155. doi: 10.1680/geot.2008.58.2.143
    [4]
    RAMPELLO S, FANTERA L, MASINI L. Efficiency of embedded barriers to mitigate tunnelling effects[J]. Tunnelling and Underground Space Technology, 2019, 89: 109–124. doi: 10.1016/j.tust.2019.03.027
    [5]
    BILOTTA E, RUSSO G. Use of a line of piles to prevent damages induced by tunnel excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(3): 254–262. doi: 10.1061/(ASCE)GT.1943-5606.0000426
    [6]
    邹文浩, 徐明. 考虑土体小应变刚度特征时隔断结构保护效果的三维数值分析[J]. 岩土工程学报, 2013, 35(增刊1): 203–209. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1034.htm

    ZOU Wen-hao, XU Ming. 3D numerical analysis of mitigation effect of separation pile and diaphragm wall considering small strain stiffness of soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 203–209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1034.htm
    [7]
    郑刚, 杜一鸣, 刁钰. 隔离桩对基坑外既有隧道变形控制的优化分析[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3499–3509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1111.htm

    ZHENG Gang, DU Yi-ming, DIAO Yu. Optimization analysis of efficiency of isolation piles in controlling the deformation of existing tunnels adjacent to deep excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3499–3509. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1111.htm
    [8]
    徐长节, 曾晓鑫, 戚晓锴, 等. 拱形双排隔离桩对既有隧道的保护效果研究[J]. 防灾减灾工程学报, 2018, 38(4): 633–641. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201804007.htm

    XU Chang-jie, ZENG Xiao-xin, QI Xiao-kai, et al. Study on protective effect of arched double row piles on existing tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(4): 633–641. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201804007.htm
    [9]
    陈仁朋, 王诚杰, 鲁立, 等. 开挖对地铁盾构隧道影响及控制措施[J]. 工程力学, 2017, 34(12): 1–13. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712002.htm

    CHEN Ren-peng, WANG Cheng-jie, LU Li, et al. Influence of excavation on exist metro shield tunnel and control measures[J]. Engineering Mechanics, 2017, 34(12): 1–13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712002.htm
    [10]
    陈仁朋, AL-MADHAGI ASHRAF, 孟凡衍. 基坑开挖对旁侧隧道影响及隔断墙作用离心模型试验研究[J]. 岩土工程学报, 2018, 40(增刊2): 6–11. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17549.shtml

    CHEN Ren-peng, ASHRAF A M, MENG Fan-yan. Three-dimensional centrifuge modeling of influence of nearby excavations on existing tunnels and effects of cut-off walls[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 6–11. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17549.shtml
    [11]
    徐晓兵, 胡琦, 曾理彬, 等. 隔离桩对干砂地基中基坑侧方隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊1): 3015–3022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1042.htm

    XU Xiao-bing, HU Qi, ZENG Li-bin, et al. Model tests on the effect of isolation pile on existing tunnel with adjacent excavation in dry sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 3015–3022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1042.htm
    [12]
    LEDESMA A, ALONSO E E. Protecting sensitive constructions from tunnelling: the case of world heritage buildings in Barcelona[J]. Géotechnique, 2017, 67(10): 914–925. doi: 10.1680/jgeot.SiP17.P.155
    [13]
    LEE K M, ROWE R K, LO K Y. Subsidence owing to tunneling: I estimating the gap parameter[J]. Canadian Geotechnical Journal, 1992, 29(6): 929–940. doi: 10.1139/t92-104
    [14]
    CAO L Q, ZHANG D L, FANG Q, et al. Movements of ground and existing structures induced by slurry pressure-balance tunnel boring machine (SPB TBM) tunnelling in clay[J]. Tunnelling and Underground Space Technology, 2020, 97: 103278. https://www.sciencedirect.com/science/article/pii/S0886779819302950
    [15]
    LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9): 846–856. doi: 10.1061/(ASCE)1090-0241(1998)124:9(846)
    [16]
    LOGANATHAN N, POULOS H G, XU K J. Ground and pile-group responses due to tunnelling[J]. Soils and Foundations, 2001, 41(1): 57–67. https://trid.trb.org/view.aspx?id=685255
    [17]
    MELAN E. Der spannungszustand der durch eine einzelkraft im innern beanspruchten halbscheibe[J]. ZAMM - Zeitschrift Für Angewandte Mathematik Und Mechanik, 1932, 12(6): 343–346. (in German). doi: 10.1002/zamm.19320120603
    [18]
    VERRUIJT A, BOOKER J R. Complex variable analysis of Mindlin's tunnel problem. In Developments in theoretical geomechanics[M]// The John Booker Memorial Symposium, Rotterdam: Balkema, 2000.
  • Cited by

    Periodical cited type(1)

    1. 王建中,孙万光,李晓军,张蓉. 梯级水库心墙坝连溃过程数值模拟. 中国农村水利水电. 2025(04): 7-13 .

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return