• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HUANG Zhi-peng, WEI Xiao, PAN Kun, YANG Zhong-xuan. Effects of particle characteristics on small-strain dynamic properties of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 889-897. DOI: 10.11779/CJGE202205012
Citation: HUANG Zhi-peng, WEI Xiao, PAN Kun, YANG Zhong-xuan. Effects of particle characteristics on small-strain dynamic properties of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 889-897. DOI: 10.11779/CJGE202205012

Effects of particle characteristics on small-strain dynamic properties of granular materials

More Information
  • Received Date: July 04, 2021
  • Available Online: September 22, 2022
  • The small-strain shear modulus and damping ratio are the important dynamic properties of granular soils. Controversial views exist regarding the effects of particle shape and size on the small-strain dynamic properties. In this study, the small-strain shear modulus and damping ratio are measured systematically for the specimens formed by polycarbonate particles with well-controlled particle shape and size using the energy injecting virtual mass resonant column system. The test results show that the particle size has few effects on the small-strain shear modulus and damping ratio, while the particle shape has significant impacts. The shear modulus of the specimens of spherical particles is smaller than that of the elliptical particles and the clumped particles under otherwise similar conditions, while the damping ratio of the specimens of spherical particles is higher than that of the specimens of the other two particles. For the mixtures of spherical and elliptical particles, the small-strain shear modulus and damping ratio are between those of the specimens of each type of particles. The overall regularity, quantifying the shape of the particles, can be used to characterize the small-strain properties of the specimens.
  • [1]
    ISHIHARA K. Soil Behaviour in Earthquake Geotechnics[M]. New York: Oxford University Press, 1996.
    [2]
    HARDIN B O, RICHART F E Jr. Elastic wave velocities in granular soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1): 33–65. doi: 10.1061/JSFEAQ.0000493
    [3]
    WICHTMANN T, TRIANTAFYLLIDIS T. Influence of the grain-size distribution curve of quartz sand on the small strain shear modulus gmax[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1404–1418. doi: 10.1061/(ASCE)GT.1943-5606.0000096
    [4]
    LIU X, YANG J. Shear wave velocity in sand: effect of grain shape[J]. Géotechnique, 2018, 68(8): 742–748. doi: 10.1680/jgeot.17.T.011
    [5]
    GU X Q, YANG J, HUANG M S. Laboratory measurements of small strain properties of dry sands by bender element[J]. Soils and Foundations, 2013, 53(5): 735–745. doi: 10.1016/j.sandf.2013.08.011
    [6]
    SENETAKIS K, ANASTASIADIS A, PITILAKIS K. The small-strain shear modulus and damping ratio of quartz and volcanic sands[J]. Geotechnical Testing Journal, 2012, 35(6): 20120073. doi: 10.1520/GTJ20120073
    [7]
    IWASAKI T, TATSUOKA F. Effects of grain size and grading on dynamic shear moduli of sands[J]. Soils and Foundations, 1977, 17(3): 19–35. doi: 10.3208/sandf1972.17.3_19
    [8]
    MENQ F Y. Dynamic Properties of Sandy and Gravelly Soils[D]. Austin: The University of Texas at Austin, 2003.
    [9]
    SHARIFIPOUR M, DANO C, HICHER P. Wave velocities in assemblies of glass beads using bender-extender elements[C]// Proceedings of 17th ASCE Engineering Mechanics Conference, 2004, Newark.
    [10]
    HARDIN B O, KALINSKI M E. Estimating the shear modulus of gravelly soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(7): 867–875. doi: 10.1061/(ASCE)1090-0241(2005)131:7(867)
    [11]
    DUTTA T T, OTSUBO M, KUWANO R, et al. Stress wave velocity in soils: apparent grain-size effect and optimum input frequencies[J]. Géotechnique Letters, 2019, 9(4): 340–347. doi: 10.1680/jgele.18.00219
    [12]
    YANG J, GU X Q. Shear stiffness of granular material at small strains: does it depend on grain size?[J]. Géotechnique, 2013, 63(2): 165–179. doi: 10.1680/geot.11.P.083
    [13]
    PATEL A, BARTAKE P, SINGH D. An empirical relationship for determining shear wave velocity in granular materials accounting for grain morphology[J]. Geotechnical Testing Journal, 2009, 32(1): 1–10.
    [14]
    HARDIN B O. Dynamic versus static shear modulus for dry sand[J]. Materials Research and Standards, 1965, 5(5): 232–235.
    [15]
    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591–602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
    [16]
    PAYAN M, KHOSHGHALB A, SENETAKIS K, et al. Effect of particle shape and validity of Gmax models for sand: a critical review and a new expression[J]. Computers and Geotechnics, 2016, 72: 28–41. doi: 10.1016/j.compgeo.2015.11.003
    [17]
    ALTUHAFI F N, COOP M R, GEORGIANNOU V N. Effect of particle shape on the mechanical behavior of natural sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 04016071. doi: 10.1061/(ASCE)GT.1943-5606.0001569
    [18]
    曾国熙, 顾尧章, 吴建平. 粉煤灰的动剪切模量[J]. 岩土工程学报, 1985, 7(5): 1–9. doi: 10.3321/j.issn:1000-4548.1985.05.001

    ZENG Guo-xi, GU Rao-zhang, WU Jian-ping. Dynamic shear moduli of fly ashes[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 1–9. (in Chinese) doi: 10.3321/j.issn:1000-4548.1985.05.001
    [19]
    SHIN H, SANTAMARINA J C. Role of particle angularity on the mechanical behavior of granular mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(2): 353–355. doi: 10.1061/(ASCE)GT.1943-5606.0000768
    [20]
    ATHANASSIADIS A G, MISKIN M Z, KAPLAN P, et al. . Particle shape effects on the stress response of granular packings[J]. Soft Matter, 2014, 10(1): 48–59. doi: 10.1039/C3SM52047A
    [21]
    袁晓铭, 孙锐, 孙静, 等. 常规土类动剪切模量比和阻尼比试验研究[J]. 地震工程与工程振动, 2000, 20(4): 133–139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm

    YUAN Xiao-ming, SUN Rui, SUN Jing, et al. Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(4): 133–139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200004021.htm
    [22]
    SHIN B. Laboratory Investigation of the Stiffness and Damping Properties of Binary and Gap-Graded Mixtures of Granular Soils[D]. Austin: The University of Texas at Austin, 2019.
    [23]
    PAYAN M, SENETAKIS K, KHOSHGHALB A, et al. Influence of particle shape on small-strain damping ratio of dry sands[J]. Géotechnique, 2016, 66(7): 610–616. doi: 10.1680/jgeot.15.T.035
    [24]
    LI X S, YANG W L, SHEN C K, et al. Energy-injecting virtual mass resonant column system[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(5): 428–438. doi: 10.1061/(ASCE)1090-0241(1998)124:5(428)
    [25]
    YANG Z X, WEN Y X, PAN K. Previbration signature on dynamic properties of dry sand[J]. Journal of Testing and Evaluation, 2019, 47(3): 2167–2192.
    [26]
    蔡正银, 李相崧. 材料状态对干砂小应变特性的影响[J]. 岩土力学, 2004, 25(1): 10–14. doi: 10.3969/j.issn.1000-7598.2004.01.003

    CAI Zheng-yin, LI Xiang-song. Effects of material state on the small strain behavior of dry sand[J]. Rock and Soil Mechanics, 2004, 25(1): 10–14. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.01.003
    [27]
    HARDIN B O, BLACK W L. Sand stiffness under various triaxial stresses[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(2): 27–42. doi: 10.1061/JSFEAQ.0000865
    [28]
    LIU X, YANG J, WANG G H, et al. Small-strain shear modulus of volcanic granular soil: an experimental investigation[J]. Soil Dynamics and Earthquake Engineering, 2016, 86: 15–24. doi: 10.1016/j.soildyn.2016.04.005

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return