• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Kai, XIA Gao-xu, WANG Yan-zhen, ZHAO Ding-feng, ZHUANG Hai-yang, CHEN Guo-xing. Three-dimensional loosely coupled effective stress method for seismic soil-structure interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 861-869. DOI: 10.11779/CJGE202205009
Citation: ZHAO Kai, XIA Gao-xu, WANG Yan-zhen, ZHAO Ding-feng, ZHUANG Hai-yang, CHEN Guo-xing. Three-dimensional loosely coupled effective stress method for seismic soil-structure interactions[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 861-869. DOI: 10.11779/CJGE202205009

Three-dimensional loosely coupled effective stress method for seismic soil-structure interactions

More Information
  • Received Date: June 15, 2021
  • Available Online: September 22, 2022
  • Wave reflection and transmission phenomena occur when seismic ground motion propagates to the soil-structure interface, and the surrounding soil is under three-dimensional (3D) cyclic shearing with reciprocating change of shear stress and normal stress difference. The 3D equivalent shear strain algorithm and the loading-unloading criterion are used to extend the 1D Davidenkov hysteretic model in association with an incremental excess pore water pressure (EPWP) model to the 3D stress state. A weakly coupled effective stress method in 3D stress state is established considering the coupling between the cyclic degradation of soil stiffness and the EPWP generation during cyclic loading. Based on the ABAQUS explicit solver, the proposed method is implemented, allowing to perform nonlinear seismic response analysis of soil-structure interactions in 3D liquefiable site. The numerical simulation is carried out against a shaking table test on the subway station in liquefiable site. The results show that the EPWP generation leads to the degradation of soil stiffness, which significantly affects the dynamic soil-structure interactions. The energy-focusing time at the soil-structure interface obtained by numerical simulation and the corresponding instantaneous predominant frequency are in good agreement with the test results. The proposed effective stress method can capture the dynamic soil-structure interaction characteristics in the shaking table tests. However, the effective stress level at soil skeleton significantly affects the EPWP generation. The incomplete density similarity ratio design of the shaking table tests can cause the distribution of the EPWP ratio in the model soil deviated with the prototype.
  • [1]
    ZHUANG H Y, HU Z H, WANG X J, et al. Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling[J]. Bulletin of Earthquake Engineering, 2015, 13(12): 3645–3668. doi: 10.1007/s10518-015-9790-6
    [2]
    ELGAMAL A, YANG Z H, PARRA E, et al. Modeling of cyclic mobility in saturated cohesionless soils[J]. International Journal of Plasticity, 2003, 19(6): 883–905.
    [3]
    YANG Z H, ELGAMAL A, PARRA E. Computational model for cyclic mobility and associated shear deformation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(12): 1119–1127. doi: 10.1061/(ASCE)1090-0241(2003)129:12(1119)
    [4]
    KHOSHNOUDIAN F, SHAHROUR I. Numerical analysis of the seismic behavior of tunnels constructed in liquefiable soils[J]. Soils and Foundations, 2002, 42(6): 1–8. doi: 10.3208/sandf.42.6_1
    [5]
    BAO X H, XIA Z F, YE G L, et al. Numerical analysis on the seismic behavior of a large metro subway tunnel in liquefiable ground[J]. Tunnelling and Underground Space Technology, 2017, 66: 91–106. doi: 10.1016/j.tust.2017.04.005
    [6]
    王刚, 张建民, 魏星. 可液化土层中地下车站的地震反应分析[J]. 岩土工程学报, 2011, 33(10): 1623–1627. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14212.shtml

    WANG Gang, ZHANG Jian-min, WEI Xing. Seismic response analysis of a subway station in liquefiable soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1623–1627. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14212.shtml
    [7]
    王睿, 张建民. 可液化地基中单桩基础的三维数值分析方法及应用[J]. 岩土工程学报, 2015, 37(11): 1979–1985. doi: 10.11779/CJGE201511006

    WANG Rui, ZHANG Jian-min. Three-dimensional elastic-plastic analysis method for piles in liquefiable ground[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(11): 1979–1985. (in Chinese) doi: 10.11779/CJGE201511006
    [8]
    TROPEANO G, CHIARADONNA A, D'ONOFRIO A, et al. A numerical model for non-linear coupled analysis of the seismic response of liquefiable soils[J]. Computers and Geotechnics, 2019, 105: 211–227. doi: 10.1016/j.compgeo.2018.09.008
    [9]
    OLSON S M, MEI X, HASHASH Y M A. Nonlinear site response analysis with pore-water pressure generation for liquefaction triggering evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(2): 04019128. doi: 10.1061/(ASCE)GT.1943-5606.0002191
    [10]
    FINN L. Practical studies of the seismic response of a rockfill dam[J]. Buddhist Christian Studies, 1993, 24: 89–100.
    [11]
    FINN W, YOGENDRAKUMAR M, YOSHIDA N. Comparative assessment of methods for dynamic effective stress analysis[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1989, 8: 330–339.
    [12]
    CHEN G X, WANG Y Z, ZHAO D F, et al. A new effective stress method for nonlinear site response analyses[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(6): 1595–1611.
    [13]
    王彦臻, 赵丁凤, 陈国兴, 等. 一维场地地震反应非线性有效应力分析法及其验证[J]. 岩土工程学报, 2021, 43(3): 502–510. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18573.shtml

    WANG Yan-zhen, ZHAO Ding-feng, CHEN Guo-xing, et al. A new nonlinear effective stress method for one-dimensional seismic site response analysis and its validation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 502–510. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18573.shtml
    [14]
    CHEN G X, CHEN S, ZUO X, et al. Shaking-table tests and numerical simulations on a subway structure in soft soil[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 13-28.
    [15]
    CHEN G X, CHEN S, QI C Z, et al. Shaking table tests on a three-arch type subway station structure in a liquefiable soil[J]. Bulletin of Earthquake Engineering, 2015, 13(6): 1675–1701.
    [16]
    王国波, 郝朋飞, 孙富学. 地铁车站结构端部效应影响范围研究[J]. 岩土工程学报, 2020, 42(8): 1435–1445. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18271.shtml

    WANG Guo-bo, HAO Peng-fei, SUN Fu-xue. Spatial influence scope of end wall of metro station structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1435–1445. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18271.shtml
    [17]
    陈国兴, 左熹, 王志华, 等. 可液化场地地铁车站结构地震破坏特性振动台试验研究[J]. 建筑结构学报, 2012, 33(1): 128–137. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201201017.htm

    CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al. Shaking table test on seismic failure characteristics of subway station structure at liquefiable ground[J]. Journal of Building Structures, 2012, 33(1): 128–137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201201017.htm
    [18]
    CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022.
    [19]
    DSSC. Abaqus/Standard User's Manual, ABAQUS 6.10 Documentation [CP/DK]. Providence, Rhode Island, 2010.
    [20]
    陈国兴, 王志华, 左熹, 等. 振动台试验叠层剪切型土箱的研制[J]. 岩土工程学报, 2010, 32(1): 89–97. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11904.shtml

    CHEN Guo-xing, WANG Zhi-hua, ZUO Xi, et al. Development of laminar shear soil container for shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 89–97. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract11904.shtml
    [21]
    王军, 蔡袁强, 李校兵. 循环荷载作用下超固结软黏土软化-孔压模型研究[J]. 岩土力学, 2008, 29(12): 3217–3222. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812012.htm

    WANG Jun, CAI Yuan-qiang, LI Xiao-bing. Cyclic softening-pore pressure generation model for overconsolidated clay under cyclic loading[J]. Rock and Soil Mechanics, 2008, 29(12): 3217–3222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200812012.htm
    [22]
    邱贤阳, 史秀志, 周健, 等. 基于HHT能量谱的高精度雷管短微差爆破降振效果分析[J]. 爆炸与冲击, 2017, 37(1): 107–113. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201701015.htm

    QIU Xian-yang, SHI Xiu-zhi, ZHOU Jian, et al. On vibration reduction effect of short millisecond blasting by high-precision detonator based on HHT energy spectrum[J]. Explosion and Shock Waves, 2017, 37(1): 107–113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201701015.htm
  • Related Articles

    [1]ZHAN Zheng-gang, ZHANG He-zuo, CHENG Rui-lin, QIU Huan-feng. Application of methods for life-cycle deformation control of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1141-1147. DOI: 10.11779/CJGE202206019
    [2]LI Lin, LI Jing-pei, SUN De-an, ZHANG Ling-xiang. Prediction method for time-dependent load-settlement relationship of a jacked pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2327-2334. DOI: 10.11779/CJGE201712023
    [3]LIU Xin, GAN Liang-qin, SHENG Ke, HONG Bao-ning. Experimental study on service life of foamed mixture lightweight soil based on method of accelerated stress tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1793-1799. DOI: 10.11779/CJGE201710006
    [4]HU Bin, WANG Xin-gang, FENG Xiao-la, HU Qi-chen, WANG Wei. Analytical prediction and numerical simulation of effect of a deep excavation project of wuhan metro on nearby viaduct[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 368-373. DOI: 10.11779/CJGE2014S2064
    [5]DENG Dong-ping, LI Liang, ZHAO Lian-heng, LIU Jian-hao. Prediction of service life of pre-stressed anchorage bolt (cable) due to corrosion expansion[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1464-1472. DOI: 10.11779/CJGE201408012
    [6]Martin Wieland, R.Peter Brenner. Life-span of concrete and embankment dams and economic benefits of dam safety projects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(11): 1692-1698.
    [7]HAN Xuan, LI Ning. A predicting model for ground movement induced by non-uniform convergence of tunnel[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 347-352.
    [8]REN Jianxi, JIANG Yu, GE Xiurun. Test and analysis on rock fatigue life due to affecting factors under uniaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 47-50.
    [9]Settlement prediction methods considering creep[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 416-418.
    [10]Zhang Zhenying, Wu Shiming, Chen Yunmin. Experimental research on the parameter of life rubbish in city[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 38-42.
  • Cited by

    Periodical cited type(11)

    1. 吕宏强,唐天成,包晨宇. 基于光滑粒子流体动力学法的流固共轭自然对流传热数值模拟. 航空学报. 2025(05): 180-196 .
    2. 付永帅. 基于机器视觉的水利枢纽工程生态脆弱区地基渗流仿真分析. 水利规划与设计. 2024(01): 89-93+102 .
    3. 高玉峰,王玉杰,张飞,姬建,陈亮,倪钧钧,张卫杰,宋健,杨尚川. 边坡工程与堤坝工程研究进展. 土木工程学报. 2024(08): 97-118 .
    4. 张德沧,毛佳,戴妙林,邵琳玉,赵兰浩. 圆化离散单元法的改进及其在岩体断裂过程中的应用. 岩土工程学报. 2024(09): 1974-1983 . 本站查看
    5. 黄帅,刘传正,GODA Katsuichiro. 光滑粒子流体动力学方法在饱和边坡地震滑移大变形中的适用性研究. 岩土工程学报. 2023(02): 336-344+443 . 本站查看
    6. 桂滨,林岩松,关彦斌. 高压浆液挤压饱和土体变形模拟的SPH方法. 公路交通科技. 2023(03): 51-57 .
    7. 王占彬,张卫杰,张健,代登辉,高玉峰. 基于并行SPH方法的地震滑坡对桥桩的冲击作用. 湖南大学学报(自然科学版). 2022(07): 54-65 .
    8. 张卫杰,余瑞华,陈宇,高玉峰,黄雨. 强度指标影响下滑坡运动特征及参数反分析. 岩土工程学报. 2022(12): 2304-2311 . 本站查看
    9. 戴轩,郑刚,程雪松,霍海峰. 基于DEM-CFD方法的基坑工程漏水漏砂引发地层运移规律的数值模拟. 岩石力学与工程学报. 2019(02): 396-408 .
    10. 杜彬,邱兆勇. 防渗墙技术在堤坝施工中的应用. 水利科学与寒区工程. 2019(02): 123-125 .
    11. 张卫杰,郑虎,王占彬,高玉峰. 基于三维并行SPH模型的土体流滑特性研究. 工程地质学报. 2018(05): 1279-1284 .

    Other cited types(6)

Catalog

    Article views (250) PDF downloads (200) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return