• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Meng-zi, CAI Guo-qing, ZHAO Cheng-gang. Anisotropic elastoplastic model for clays with improved yield surfaces and rotational hardening rule[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 851-860. DOI: 10.11779/CJGE202205008
Citation: LI Meng-zi, CAI Guo-qing, ZHAO Cheng-gang. Anisotropic elastoplastic model for clays with improved yield surfaces and rotational hardening rule[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 851-860. DOI: 10.11779/CJGE202205008

Anisotropic elastoplastic model for clays with improved yield surfaces and rotational hardening rule

More Information
  • Received Date: May 24, 2021
  • Available Online: September 22, 2022
  • A new anisotropic constitutive model is proposed based on the critical state theory and the rotational hardening rule. Firstly, an expression for yield surfaces is developed by employing the non-linear logarithmic function capable of describing volumetric deformation characteristics of anisotropic soils in a wide variety based on the results of the constant stress ratio loading tests. The shape of yield surfaces can be controlled by the introduced parameter n. The yield surface is elliptical for n=1, bullet for n < 1 and teardrop for n > 1. Then, the expression for the boundary value with rotational hardening rule under the virgin constant stress ratio loading is proposed. Under isotropic loading and critical conditions, the value of the expression reaches zero eventually. The model can be degenerated to the modified Cam-clay (MCC) when n=1 and the rotation of the yield surface is not considered. Finally, the explicit modified Euler method with automatic error control is used to numeralize the model, and the model is verified by the constant stress ratio loading tests, variable stress path tests, drained triaxial compression tests, undrained triaxial compression tests and undrained triaxial extension tests. The results show that the proposed anisotropic constitutive model can accurately describe the volume deformation, shear and strength characteristics of clays under a series of stress paths.
  • [1]
    尹振宇. 土体微观力学解析模型: 进展及发展[J]. 岩土工程学报, 2013, 35(6): 993–1009. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15068.shtml

    YIN Zhen-yu. Micromechanics-based analytical model for soils: review and development[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 993–1009. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15068.shtml
    [2]
    张坤勇, 殷宗泽, 梅国雄. 土体各向异性研究进展[J]. 岩土力学, 2004, 25(9): 1503–1509. doi: 10.3969/j.issn.1000-7598.2004.09.033

    ZHANG Kun-yong, YIN Zong-ze, MEI Guo-xiong. Development of soil's anisotropy study[J]. Rock and Soil Mechanics, 2004, 25(9): 1503–1509. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.09.033
    [3]
    WHEELER S J, NÄÄTÄNEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40(2): 403–418. doi: 10.1139/t02-119
    [4]
    DAFALIAS Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341–347. doi: 10.1016/0093-6413(86)90047-9
    [5]
    DAFALIAS Y F, TAIEBAT M. Anatomy of rotational hardening in clay plasticity[J]. Géotechnique, 2013, 63(16): 1406–1418. doi: 10.1680/geot.12.P.197
    [6]
    PESTANA J M, WHITTLE A J. Formulation of a unified constitutive model for clays and sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1215–1243. doi: 10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F
    [7]
    YANG C, LIU X L, LIU X F, et al. Constitutive modelling of Otaniemi soft clay in both natural and reconstituted states[J]. Computers and Geotechnics, 2015, 70: 83–95. doi: 10.1016/j.compgeo.2015.07.018
    [8]
    李海潮, 童晨曦, 马博, 等. 基于双参数屈服函数的黏土和砂土非正交单屈服面模型[J]. 岩石力学与工程学报, 2020, 39(11): 2319–2327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm

    LI Hai-chao, TONG Chen-xi, MA Bo, et al. A non-orthogonal single yield surface model for clays and sands based on a two-parameter yield function[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2319–2327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm
    [9]
    陈艳妮, 杨仲轩. 基于热力学理论的超固结黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 547–553. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16865.shtml

    CHEN Yan-ni, YANG Zhong-xuan. Thermodynamics-based bounding surface model for overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 547–553. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16865.shtml
    [10]
    CHEN Y N, YANG Z X. A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays[J]. Computers and Geotechnics, 2017, 90: 133–143. doi: 10.1016/j.compgeo.2017.06.007
    [11]
    LAGIOIA R, PUZRIN A M, POTTS D M. A new versatile expression for yield and plastic potential surfaces[J]. Computers and Geotechnics, 1996, 19(3): 171–191. doi: 10.1016/0266-352X(96)00005-5
    [12]
    NEWSON T A, DAVIES M C R. A rotational hardening constitutive model for anisotropically consolidated clay[J]. Soils and Foundations, 1996, 36(3): 13–20. doi: 10.3208/sandf.36.3_13
    [13]
    DAFALIAS Y F, MANZARI M T, PAPADIMITRIOU A G. SANICLAY: simple anisotropic clay plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(12): 1231–1257. doi: 10.1002/nag.524
    [14]
    DAFALIAS Y F, TAIEBAT M. Rotational hardening with and without anisotropic fabric at critical state[J]. Géotechnique, 2014, 64(6): 507–511. doi: 10.1680/geot.13.T.035
    [15]
    YANG C, SHENG D C, CARTER J P, et al. Modelling the plastic anisotropy of lower Cromer till[J]. Computers and Geotechnics, 2015, 69: 22–37. doi: 10.1016/j.compgeo.2015.04.013
    [16]
    LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263–275. doi: 10.1061/(ASCE)EM.1943-7889.0000324
    [17]
    ZHAO J, GUO N. Unique critical state characteristics in granular media considering fabric anisotropy[J]. Géotechnique, 2013, 63(8): 695–704. doi: 10.1680/geot.12.P.040
    [18]
    FU P C, DAFALIAS Y F. Fabric evolution within shear bands of granular materials and its relation to critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(18): 1918–1948. doi: 10.1002/nag.988
    [19]
    YILDIZ A, KARSTUNEN M, KRENN H. Effect of anisotropy and destructuration on behavior of Haarajoki test embankment[J]. International Journal of Geomechanics, 2009, 9(4): 153–168. doi: 10.1061/(ASCE)1532-3641(2009)9:4(153)
    [20]
    OHNO S, IIZUKA A, OHTA H. Two categories of new constitutive model derived from non-linear description of soil contractancy[J]. Journal of Applied Mechanics, 2006, 9: 407–414. doi: 10.2208/journalam.9.407
    [21]
    SIVASITHAMPARAM N, CASTRO J. An anisotropic elastoplastic model for soft clays based on logarithmic contractancy[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 596–621. doi: 10.1002/nag.2418
    [22]
    LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467–488. doi: 10.1680/geot.1990.40.3.467
    [23]
    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329–378. doi: 10.1680/geot.1990.40.3.329
    [24]
    DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21–35. doi: 10.1139/t84-003
    [25]
    CHEN Y N, YANG Z X. A bounding surface model for anisotropically overconsolidated clay incorporating thermodynamics admissible rotational hardening rule[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(5): 668–690. doi: 10.1002/nag.3032
    [26]
    SLOAN S W, ABBO A J, SHENG D C. Refined explicit integration of elastoplastic models with automatic error control[J]. Engineering Computations, 2001, 18(1/2): 121–194. doi: 10.1108/02644400110365842
    [27]
    GENS A. Stress-strain and Strength of A Low Plasticity Clay[D]. London: University of London, 1982.
    [28]
    STIPHO A S. Theoretical and Experimental Investigation of the Behavior of Anisotropically Consolidated Kaolin[D]. Wales: Cardiff University, 1978.
  • Cited by

    Periodical cited type(13)

    1. 严辉,林沛元. 深圳市岩溶地层标准贯入击数神经网络模型. 地质科技通报. 2025(02): 305-321 .
    2. 李书兆,孙国栋,申辰,李文逵,罗进华,王教龙. 基于深度学习和地震数据的海上风电场CPT预测研究. 工程地球物理学报. 2025(02): 216-226 .
    3. 崔纪飞,柏林,饶平平,康陈俊杰,张锟. 基于人工智能算法的氯盐侵蚀混凝土预测模型. 硅酸盐通报. 2024(02): 439-447 .
    4. 段文魁,王来发,晁华俊,明锋. 冻结过程中土体导热系数预测模型. 中国农村水利水电. 2024(05): 47-52 .
    5. 唐少容,殷磊,杨强,柯德秀. 微胶囊相变材料改良粉砂土的导热系数及预测模型. 中国粉体技术. 2024(03): 112-123 .
    6. 姚兆明,王洵,齐健. 土体导热系数智能方法预测及影响因素敏感性分析. 工程热物理学报. 2024(05): 1440-1449 .
    7. 邓志兴,谢康,李泰灃,王武斌,郝哲睿,李佳珅. 基于粗颗粒嵌锁点高铁级配碎石振动压实质量控制新方法. 岩土力学. 2024(06): 1835-1849 .
    8. 李林,左林龙,胡涛涛,宋博恺. 基于孔压静力触探试验测试数据的原位固结系数物理信息神经网络反演方法. 岩土力学. 2024(10): 2889-2899 .
    9. 王红旗,李栋伟,钟石明,贾志文,王泽成,陈鑫,秦子鹏. 石灰改良红黏土导热系数影响因素及模型预测. 科学技术与工程. 2023(05): 2084-2092 .
    10. 王才进,武猛,蔡国军,赵泽宁,刘松玉. 基于多元分布模型预测土体热阻系数. 岩石力学与工程学报. 2023(S1): 3674-3686 .
    11. 王健翔,任瑞琪. 电学等效的稳态平板导热系数测试实验装置. 电子制作. 2023(11): 105-109 .
    12. 王才进,武猛,杨洋,蔡国军,刘松玉,何欢,常建新. 基于生物地理优化的人工神经网络模型预测软土的固结系数. 岩土力学. 2023(10): 3022-3030 .
    13. 徐明,康雅晶,马斯斯,张鹤. 基于贝叶斯优化的XGBoost模型预测路基回弹模量. 公路交通科技. 2023(11): 51-60 .

    Other cited types(2)

Catalog

    Article views (228) PDF downloads (126) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return