• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Yunyi, WANG Rui, ZHANG Jianmin. Numerical simulation of Rayleigh wave-induced large lateral spreading deformation in gentle sloping ground using SPH[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1333-1340. DOI: 10.11779/CJGE20220489
Citation: LI Yunyi, WANG Rui, ZHANG Jianmin. Numerical simulation of Rayleigh wave-induced large lateral spreading deformation in gentle sloping ground using SPH[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1333-1340. DOI: 10.11779/CJGE20220489

Numerical simulation of Rayleigh wave-induced large lateral spreading deformation in gentle sloping ground using SPH

More Information
  • Received Date: April 21, 2022
  • Available Online: February 20, 2023
  • The sloping ground may suffer from lateral spreading due to earthquake-induced soil softening or liquefaction, and this deformation is usually relatively limited in the gentle sloping ground. However, several hundred meters of lateral deformation were observed in gentle sloping ground within 3° during the 2018 Sulawesi Earthquake. This phenomenon can not be explained through the observations from the existing model tests and numerical computations, where only the shear wave ground motion is considered. The numerical simulations using the smoothed Particle Hydrodynamics (SPH) method are conducted to show that Rayleigh wave input plays an important role in lateral spreading in the gentle sloping ground. The ground soil is simulated through the Herschel Bulkley Papanastasiou (HBP) rheology constitutive model, the Rayleigh wave is input using the dynamic boundary particles (DBP) boundary condition, and the geographic information system (GIS) is utilized for 3D spatial modeling. The deformation characteristics of the gentle sloping ground under the Rayleigh wave and shear wave are computed and compared, revealing the cause of the observed large deformation of Balaroa landslide in 2018 Sulawesi Earthquake.
  • [1]
    SASSA S, TAKAGAWA T. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters[J]. Landslides, 2019, 16(1): 195-200. doi: 10.1007/s10346-018-1114-x
    [2]
    HAZARIKA H, ROHIT D, KIYOTA T, et al. Forensic evaluation of long-distance flow in gently sloped ground during the 2018 Sulawesi earthquake, Indonesia[M]//Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics. Singapore: Springer Singapore, 2021: 247-280.
    [3]
    KUTTER B L, MANZARI M T, ZEGHAL M. Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017[M]. New York: Springer Nature, 2019.
    [4]
    LI Y Y, LUO C, ZHANG J M, et al. Rayleigh wave-shear wave coupling mechanism for large lateral deformation in level liquefiable ground[J]. Computers and Geotechnics, 2022, 143: 104631. doi: 10.1016/j.compgeo.2022.104631
    [5]
    ZHANG X, KRABBENHOFT K, SHENG D C, et al. Numerical simulation of a flow-like landslide using the particle finite element method[J]. Computational Mechanics, 2015, 55(1): 167-177. doi: 10.1007/s00466-014-1088-z
    [6]
    CECCATO F, YERRO A, GIRARDI V, et al. Two-phase dynamic MPM formulation for unsaturated soil[J]. Computers and Geotechnics, 2021, 129: 103876. doi: 10.1016/j.compgeo.2020.103876
    [7]
    荚颖, 唐小微, 栾茂田, 等. 土坝的地震响应及液化无网格法分析[J]. 水利学报, 2009, 40(4): 506-512. doi: 10.3321/j.issn:0559-9350.2009.04.018

    JIE Ying, TANG Xiaowei, LUAN Maotian, et al. Meshless analysis on seismic response and liquefaction of embankments[J]. Journal of Hydraulic Engineering, 2009, 40(4): 506-512. (in Chinese) doi: 10.3321/j.issn:0559-9350.2009.04.018
    [8]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. doi: 10.1093/mnras/181.3.375
    [9]
    LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013. doi: 10.1086/112164
    [10]
    MAEDA K, SAKAI M. Development of seepage failure analysis procedure of granular ground with Smoothed Particle Hydrodynamics (SPH) method[J]. Journal of Applied Mechanics, 2004, 7: 775-786. doi: 10.2208/journalam.7.775
    [11]
    BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1537-1570. doi: 10.1002/nag.688
    [12]
    黄雨, 郝亮, 谢攀, 等. 土体流动大变形的SPH数值模拟[J]. 岩土工程学报, 2009, 31(10): 1520-1524. doi: 10.3321/j.issn:1000-4548.2009.10.007

    HUANG Yu, HAO Liang, XIE Pan, et al. Numerical simulation of large deformation of soil flow based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1520-1524. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.007
    [13]
    CRESPO A J C, DOMINGUEZ J M, ROGERS B D, et al. DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)[J]. Computer Physics Communications, 2015, 187: 204-216. doi: 10.1016/j.cpc.2014.10.004
    [14]
    胡嫚, 谢谟文, 王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报, 2016, 38(1): 58-67. doi: 10.11779/CJGE201601005

    HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. (in Chinese) doi: 10.11779/CJGE201601005
    [15]
    唐宇峰, 施富强, 廖学燕. 基于SPH的边坡稳定性计算中失稳判据研究[J]. 岩土工程学报, 2016, 38(5): 904-908. doi: 10.11779/CJGE201605016

    TANG Yufeng, SHI Fuqiang, LIAO Xueyan. Failure criteria based on SPH slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 904-908. (in Chinese) doi: 10.11779/CJGE201605016
    [16]
    骆钊, 汪淳. 改进的SPH边界处理方法与土体大变形模拟[J]. 计算力学学报, 2018, 35(3): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201803016.htm

    LUO Zhao, WANG Chun. Improved SPH boundary conditions and simulation for large deformation of soil[J]. Chinese Journal of Computational Mechanics, 2018, 35(3): 364-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201803016.htm
    [17]
    HAN Z, SU B, LI Y G, et al. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model[J]. Engineering Geology, 2019, 255: 26-36. doi: 10.1016/j.enggeo.2019.04.013
    [18]
    PENG C, LI S, WU W, et al. On three-dimensional SPH modelling of large-scale landslides[J]. Canadian Geotechnical Journal, 2022, 59(1): 24-39. doi: 10.1139/cgj-2020-0774
    [19]
    FRIGAARD I A, NOUAR C. On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 127(1): 1-26. doi: 10.1016/j.jnnfm.2005.01.003
    [20]
    LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics[J]. Journal of Computational Physics, 1993, 109(1): 67-75. doi: 10.1006/jcph.1993.1199
    [21]
    MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226. doi: 10.1006/jcph.1997.5776
    [22]
    DOMNIK B, PUDASAINI S P, KATZENBACH R, et al. Coupling of full two-dimensional and depth-averaged models for granular flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 201: 56-68. doi: 10.1016/j.jnnfm.2013.07.005
    [23]
    CRESPO A J C, GOMEZ G M, DALRYMPLE R A. Boundary conditionsgenerated by dynamic particles in SPH methods[J]. Computers Material and Continua, 2007, 5: 173-184.
    [24]
    PAN C, ZHANG R F, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2018, 24(12): 2562-2575. doi: 10.1177/1077546316689014
    [25]
    BRADLEY K, MALLICK R, ANDIKAGUMI H, et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation[J]. Nature Geoscience, 2019, 12(11): 935-939. doi: 10.1038/s41561-019-0444-1
    [26]
    WATKINSON I M, HALL R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides[J]. Nature Geoscience, 2019, 12(11): 940-945. doi: 10.1038/s41561-019-0448-x
    [27]
    GALLANT A P, MONTGOMERY J, MASON H B, et al. The Sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake[J]. Landslides, 2020, 17(8): 1925-1934. doi: 10.1007/s10346-020-01354-1
    [28]
    KIYOTA T, FURUICHI H, HIDAYAT R F, et al. Overview of long-distance flow-slide caused by the 2018 Sulawesi earthquake, Indonesia[J]. Soils and Foundations, 2020, 60(3): 722-735. doi: 10.1016/j.sandf.2020.03.015
  • Cited by

    Periodical cited type(8)

    1. 吴必胜,陈治良,廖昕,瞿立明. 层状土中大直径嵌岩单桩竖向受荷机理试验研究. 施工技术(中英文). 2025(05): 120-126 .
    2. 杨景泉,郑长杰,丁选明. 竖向入射P波激励下饱和土中管桩地震响应. 岩土力学. 2025(05): 1477-1488 .
    3. 可文海,杨文海,李源,吴磊. SH波作用下斜坡地形中桩基的动力响应研究. 岩土力学. 2025(05): 1545-1555 .
    4. 徐其. 激振荷载作用下桩基础变形及力学响应特性试验研究. 江西建材. 2024(12): 267-269+272 .
    5. 李永焕,刘志贺,饶勤波,过锦,胡海波,刘秋媛,杨萤. 考虑空间效应的基坑开挖对邻近管线的影响分析. 长江科学院院报. 2023(05): 125-130 .
    6. 李斌,景立平,王友刚,涂健,齐文浩. 水平低周往复荷载作用下核岛桩基抗震性能试验研究. 岩土工程学报. 2023(10): 2119-2128 . 本站查看
    7. 曹小林,周凤玺,戴国亮,龚维明. 激振荷载作用下桩基础动力响应的现场试验分析. 岩土工程学报. 2023(S1): 171-175 . 本站查看
    8. 曹小林,周凤玺,戴国亮. 水平荷载作用下饱和土与单桩的相互作用动力响应分析. 岩土工程学报. 2023(S2): 73-78 . 本站查看

    Other cited types(7)

Catalog

    Article views PDF downloads Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return