• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YANG Kai-wen, LI Jun-chao, WANG Feng, CHEN Tao, WANG Yu-bing, ZOU De-gao, LIU Jing-mao. Centrifugal shaking table tests on saturated sand foundation under dam[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 778-786. DOI: 10.11779/CJGE202204022
Citation: YANG Kai-wen, LI Jun-chao, WANG Feng, CHEN Tao, WANG Yu-bing, ZOU De-gao, LIU Jing-mao. Centrifugal shaking table tests on saturated sand foundation under dam[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 778-786. DOI: 10.11779/CJGE202204022

Centrifugal shaking table tests on saturated sand foundation under dam

More Information
  • Received Date: May 30, 2021
  • Available Online: September 22, 2022
  • As the core part of the important infrastructure of water conservancy and hydropower projects, the stability of dam foundation under earthquake is widely concerned. In order to solve the problem of the dynamic response and liquefaction law of saturated sand foundation under dam, two groups of centrifugal shaking table tests are carried out to analyze the influences of overlying loads on the seismic response of this foundation. The test results show that when there are no overlying loads on the foundation, the soil in the lower layer is softened during the vibration, while the soil in the upper layer is liquefied during the vibration, and the acceleration magnification factor of the foundation and the excess pore pressure ratio of the soil first decrease and then increase along the depth direction. When the foundation has overlying loads, liquefaction occurs in the soil at the edge of the overlying loads, and the acceleration magnification factor of the foundation increases gradually along the depth direction and the ratio of excess pore water pressure decreases gradually along the depth direction. The existence of overlying loads of dam can increase the effective stress of soil and reduce the excess pore pressure ratio. After the dissipation of excess pore pressure, the compactness and stiffness of soil is improved. Finally, based on the nonlinear finite element software GEODYNA, the numerical simulation of the two centrifuge tests is carried out, and the results are in good agreement. The results of the tests and the numerical simulation provide the basis for the design and reinforcement of the saturated sand dam foundation.
  • [1]
    刘恢先. 唐山大地震震害[M]. 北京: 地震出版社, 1985.

    LIU Hui-xian. Damage of Tangshan Earthquake[M]. Beijing: Seismological Press, 1985. (in Chinese)
    [2]
    陈跃庆, 吕西林. 几次大地震中地基基础震害的启示[J]. 工程抗震, 2001, 23(2): 8–15. doi: 10.3969/j.issn.1002-8412.2001.02.002

    CHEN Yue-qing, LÜ Xi-lin. Lessons learned from damages of soils and foundations during several strong earthquakes[J]. Earthquake Resistant Engineering, 2001, 23(2): 8–15. (in Chinese) doi: 10.3969/j.issn.1002-8412.2001.02.002
    [3]
    SEED H B. Landslides during earthquakes due to soil liquefaction[J]. Journal of the Soil Mechanics and Foundations Division, 1969, 95(4): 1123.
    [4]
    SEED H B. Soil problems and soil behavior[J]. Earthquake Engineering, 1970(10): 227–251.
    [5]
    MATSUO O. Damage to river dikes[J]. Soils and Foundations, 1996, 36: 235–240. doi: 10.3208/sandf.36.Special_235
    [6]
    TANI S. Behavior of large fill dams during earthquake and earthquake damage[J]. Soil Dynamics and Earthquake Engineering, 2000, 20(1/2/3/4): 223–229.
    [7]
    ZHANG J M, YANG Z Y, GAO X Z, et al. Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 76: 145–156. doi: 10.1016/j.soildyn.2015.03.014
    [8]
    ARULANANDAN K, ANANDARAJAH A, ABGHARI A. Centrifugal modeling of soil liquefaction susceptibility[J]. Journal of Geotechnical Engineering, 1983, 109(3): 281–300. doi: 10.1061/(ASCE)0733-9410(1983)109:3(281)
    [9]
    HUSHMAND B, SCOTT R F, CROUSE C B. Centrifuge liquefaction tests in a laminar box[J]. Géotechnique, 1988, 38(2): 253–262. doi: 10.1680/geot.1988.38.2.253
    [10]
    LAMBE P C, WHITMAN R V. Dynamic centrifugal modeling of a horizontal dry sand layer[J]. Journal of Geotechnical Engineering, 1985, 111(3): 265–287. doi: 10.1061/(ASCE)0733-9410(1985)111:3(265)
    [11]
    刘庭伟, 李俊超, 朱斌, 等. 小型土石坝加密抗液化离心机振动台试验研究[J]. 岩土力学, 2020, 41(11): 3695–3704. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011021.htm

    LIU Ting-wei, LI Jun-chao, ZHU Bin, et al. Centrifuge shaking table modelling test study on anti-liquefied densification of small earth-rock dam slope[J]. Rock and Soil Mechanics, 2020, 41(11): 3695–3704. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011021.htm
    [12]
    SEED H B, MARTIN G R, PYKE R M. Effect of multidirectional shaking on pore pressure development in sands[J]. Journal of the Geotechnical Engineering Division, 1978, 104(1): 27–44. doi: 10.1061/AJGEB6.0000575
    [13]
    黄春霞, 张鸿儒, 隋志龙, 等. 饱和砂土地基液化特性振动台试验研究[J]. 岩土工程学报, 2006, 28(12): 2098–2103. doi: 10.3321/j.issn:1000-4548.2006.12.010

    HUANG Chun-xia, ZHANG Hong-ru, SUI Zhi-long, et al. Shaking table tests on liquefaction properties of saturated sand ground[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2098–2103. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.12.010
    [14]
    VARGHESE R M, MADHAVI LATHA G. Shaking table tests to investigate the influence of various factors on the liquefaction resistance of sands[J]. Natural Hazards, 2014, 73(3): 1337–1351. doi: 10.1007/s11069-014-1142-3
    [15]
    苏栋, 李相崧. 地震历史对砂土抗液化性能影响的试验研究[J]. 岩土力学, 2006, 27(10): 1815–1818. doi: 10.3969/j.issn.1000-7598.2006.10.035

    SU Dong, LI Xiang-song. Centrifuge investigation on effect of seismic history on resistance of sand to liquefaction[J]. Rock and Soil Mechanics, 2006, 27(10): 1815–1818. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.10.035
    [16]
    刘晶波, 刘祥庆, 王宗纲, 等. 砂土地基自由场离心机振动台模型试验[J]. 清华大学学报(自然科学版), 2009, 49(9): 31–34. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200909009.htm

    LIU Jing-bo, LIU Xiang-qing, WANG Zong-gang, et al. Dynamic centrifuge model test of an unconfined sandy foundation[J]. Journal of Tsinghua University (Science and Technology), 2009, 49(9): 31–34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200909009.htm
    [17]
    朱建群, 孔令伟, 钟方杰. 粉粒含量对砂土强度特性的影响[J]. 岩土工程学报, 2007, 29(11): 1647–1652. doi: 10.3321/j.issn:1000-4548.2007.11.009

    ZHU Jian-qun, KONG Ling-wei, ZHONG Fang-jie. Effect of fines content on strength of silty sands[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1647–1652. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.11.009
    [18]
    周燕国, 梁甜, 李永刚, 等. 含黏粒砂土场地液化离心机振动台试验研究[J]. 岩土工程学报, 2013, 35(9): 1650–1658. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201309013.htm

    ZHOU Yan-guo, LIANG Tian, LI Yong-gang, et al. Dynamic centrifuge tests on liquefaction of clayey sand ground[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1650–1658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201309013.htm
    [19]
    ADALIER K, ELGAMAL A. Liquefaction of over- consolidated sand: a centrifuge investigation[J]. Journal of Earthquake Engineering, 2005, 9(S1): 127–150.
    [20]
    苏栋, 李相菘. 砂土自由场地震响应的离心机试验研究[J]. 地震工程与工程振动, 2006, 26(2): 166–170. doi: 10.3969/j.issn.1000-1301.2006.02.027

    SU Dong, LI Xiang-song. Centrifuge modeling of seismic response of free sand ground[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(2): 166–170. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.02.027
    [21]
    蔡正银, 吴诗阳, 武颖利, 等. 高地震烈度区深厚覆盖砂层液化研究[J]. 岩土工程学报, 2020, 42(3): 405–412. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm

    CAI Zheng-yin, WU Shi-yang, WU Ying-li, et al. Liquefaction of deep overburden layers in zones with high earthquake intensity[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 405–412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202003003.htm
    [22]
    陈云敏, 韩超, 凌道盛, 等. ZJU400离心机研制及其振动台性能评价[J]. 岩土工程学报, 2011, 33(12): 1887–1894. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm

    CHEN Yun-min, HAN Chao, LING Dao-sheng, et al. Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1887–1894. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112013.htm
    [23]
    LIU J M, ZOU D G, KONG X J. Three-dimensional scaled memory model for gravelly soils subject to cyclic loading[J]. Journal of Engineering Mechanics, 2018, 144(3): 04018001. doi: 10.1061/(ASCE)EM.1943-7889.0001367
    [24]
    伍小平, 孙利民, 胡世德, 等. 振动台试验用层状剪切变形土箱的研制[J]. 同济大学学报(自然科学版), 2002, 30(7): 781–785. doi: 10.3321/j.issn:0253-374X.2002.07.001

    WU Xiao-ping, SUN Li-min, HU Shi-de, et al. Development of laminar shear box used in shaking table test[J]. Journal of Tongji University (Natural Science), 2002, 30(7): 781–785. (in Chinese) doi: 10.3321/j.issn:0253-374X.2002.07.001

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return