• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
AI Zhi-yong, YE Zi-kun, LIU Wen-jie. Time-behavior of pile groups based on fractional derivative soil model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 749-754. DOI: 10.11779/CJGE202204018
Citation: AI Zhi-yong, YE Zi-kun, LIU Wen-jie. Time-behavior of pile groups based on fractional derivative soil model[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 749-754. DOI: 10.11779/CJGE202204018

Time-behavior of pile groups based on fractional derivative soil model

More Information
  • Received Date: January 05, 2021
  • Available Online: September 22, 2022
  • Based on the finite element method, the finite element equations for the vertically loaded pile groups are established by dividing the pile groups into a number of 2-node elements. To simulate the rheologic properties of saturated soft soils, the stress-strain relationship of the fractional Merchant model is derived by the Laplace transform. The elastic-viscoelastic correspondence principle is introduced to obtain the boundary element solutions for the fractional transversely isotropic viscoelastic saturated soft soils. In light of the displacement continuity of pile-soil interfaces, the governing equation for the interaction between the pile groups and the soils is derived by coupling the finite element equations for the pile groups and the boundary element ones for the soils. Later, the time behaviors of each state variable for the pile groups can be solved by introducing the displacement conditions of the pile cap. Based on the foregoing theory, numerical examples are griven to verify the rationality of the proposed method, and then the influences of fractional numbers on the time-dependent behaviors of the pile groups are discussed.
  • [1]
    程泽海, 凌道盛, 陈云敏. 桩筏基础在竖向荷载作用下的时间效应[J]. 土木工程学报, 2004, 37(2): 73–77. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200402012.htm

    CHENG Ze-hai, LING Dao-sheng, CHEN Yun-min. Time effects on piled raft foundation under vertical loading[J]. China Civil Engineering Journal, 2004, 37(2): 73–77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200402012.htm
    [2]
    崔春义, 栾茂田, 杨庆, 等. 结构–桩筏–地基体系时间效应的三维数值分析[J]. 岩土工程学报, 2007, 29(8): 1244–1250. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708023.htm

    CUI Chun-yi, LUAN Mao-tian, YANG Qing, et al. 3D numerical analysis of time effect of superstructure-piled raft-foundation[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1244–1250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200708023.htm
    [3]
    梁发云, 宋著, 郭蔚东. 考虑固结群桩竖向应力相互作用的积分方程分析方法[J]. 岩土工程学报, 2014, 36(5): 847–854. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405009.htm

    LIANG Fa-yun, SONG Zhu, GUO Wei-dong. Integral equation method for interaction effect of stress of vertically loaded pile groups considering consolidation[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 847–854. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405009.htm
    [4]
    陈宗基, 刘恢先. 黏土层沉陷(由于固结和次时间效应)的二维问题[J]. 力学学报, 1958(1): 1–10.

    CHEN Zong-ji, LIU Hui-xian. Two dimensional problems of settlements of clay layers due to consolidation and secondary time effects[J]. Acta Mechanica Sinica, 1958(1): 1–10. (in Chinese)
    [5]
    钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996.

    QIAN Jia-huan, YIN Zong-ze. Geotechnical Principle and Calculation[M]. Beijing: China Water Power Press, 1996. (in Chinese)
    [6]
    陆建飞, 王建华, 沈为平. 考虑固结和流变的群桩的积分方程解法[J]. 岩土工程学报, 2000, 22(6): 650–653. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200006002.htm

    LU Jian-fei, WANG Jian-hua, SHEN Wei-ping. The integral equation method to solve pile group problem considering the consolidation and rheology of soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 650–653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200006002.htm
    [7]
    曾庆有, 周健, 屈俊童. 考虑应力应变时间效应的桩基长期沉降计算方法[J]. 岩土力学, 2005, 26(8): 1283–1287. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200508020.htm

    ZENG Qing-you, ZHOU Jian, QU Jun-tong. Method for long-term settlement prediction of pile-foundation in consideration of time effect of stress–strain relationship[J]. Rock and Soil Mechanics, 2005, 26(8): 1283–1287. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200508020.htm
    [8]
    AI Z Y, GUI J C, CHENG Y C. Performance of vertically loaded pile group embedded in layered transversely isotropic saturated viscoelastic soils[J]. Engineering Analysis with Boundary Elements, 2020, 110: 112–123.
    [9]
    何利军, 孔令伟, 吴文军, 等. 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32(增刊2): 239–243, 249. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2039.htm

    HE Li-jun, KONG Ling-wei, WU Wen-jun, et al. A description of creep model for soft soil with fractional derivative[J]. Rock and Soil Mechanics, 2011, 32(S2): 239–243, 249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2039.htm
    [10]
    YIN D S, WU H, CHENG C, et al. Fractional order constitutive model of geomaterials under the condition of triaxial test[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 961–972.
    [11]
    AI Z Y, ZHAO Y Z, LIU W J. Fractional derivative modeling for axisymmetric consolidation of multilayered cross- anisotropic viscoelastic porous media[J]. Computers & Mathematics with Applications, 2020, 79(5): 1321–1334.
    [12]
    AI Z Y, HU K X, LI P C. Fractional non-axisymmetric consolidation of stratified cross-anisotropic visco-poroelastic media[J]. Applied Mathematical Modelling, 2020, 87: 372–388.
    [13]
    SNEDDON I N. The Use of Integral Transforms[M]. New York: McGraw-Hill, 1972.
    [14]
    陈文, 孙洪广, 李西成. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010.

    CHEN Wen, SUN Hong-guang, LI Xi-cheng. Fractional Derivative Modeling of Mechanics and Engineering Problems[M]. Beijing: Science Press, 2010. (in Chinese)
    [15]
    魏培君, 张双寅, 吴永礼. 黏弹性力学的对应原理及其数值反演方法[J]. 力学进展, 1999, 29(3): 317–330. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199903002.htm

    WEI Pei-jun, ZHANG Shuang-yin, WU Yong-li. Correspondence principles and numerical methods of inverse integral transformation in viscoelastic mechanics[J]. Advances in Mechanics, 1999, 29(3): 317–330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ199903002.htm
    [16]
    SCHAPERY R A. Approximate methods of transform inversion for viscoelastic stress analysis[J]. 4th U S National Congress Applied Mechanics, 1962, 2: 1075–1085.
    [17]
    建筑桩基技术规范: JGJ 94—2008[S]. 2008.

    Technical Code for Building Pile Foundations: JGJ 94—2008[S]. 2008. (in Chinese)
  • Related Articles

    [1]TAO Yuan-qin, SUN Hong-lei, CAI Yuan-qiang. Bayesian back analysis considering constraints[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10): 1878-1886. DOI: 10.11779/CJGE202110014
    [2]LIU Zheng-yu, PANG Yong-hao, WANG Chuan-wu, YANG-Wei-min, LIU Shen-hua, WANG Ning. Cross-hole resistivity inversion method constrained by prior information of incomplete boundary[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1124-1132. DOI: 10.11779/CJGE201906017
    [3]WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
    [4]WANG Chuan-wu, LI Shu-cai, LIU Bin, NIE Li-chao, ZHANG Feng-kai, SONG Jie, GUO Qian, REN Yu-xiao. 3D constrained electrical resistivity inversion method based on reference model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1685-1694. DOI: 10.11779/CJGE201609016
    [5]BI Yu-zhang, HE Si-ming, LI Xin-po, WU Yong, WANG Dong-po, FU Yue-sheng. Kinetic mechanism of mixed particles under constraint conditions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3): 529-536. DOI: 10.11779/CJGE201603017
    [6]LIU Bin, WANG Chuan-wu, YANG Wei-min, LI Shu-cai, NIE Li-chao, SONG Jie. 3D resistivity inversion using improved parallel genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009
    [7]LIU Bin, LI Shu-cai, NIE Li-chao, WANG Jing, SONG Jie, LIU Zheng-yu. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876.
    [8]LIU Bin, LI Shu-cai, NIE Li-chao, LI Li-ping, LIU Zheng-yu, SONG Jie, SUI Bin, ZHOU Zong-qing. Inversion imaging of 3D resistivity detection using adaptive-weighted smooth constraint and PCG algorithm[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1646-1653.
    [9]ZHANG Dong-ming, CHEN Jiang, HE Hong-fu, ZHANG Xing-hua. Unequal interval grey model based on dynamic correction of time-distance weight[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1137-1141.
    [10]LUO Rui, HUANG Xiaoming. Calculation on the stress intensity factor for the bottom crack of asphalt layer in asphalt pavement considering partial constraint by weight function[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 610-613.
  • Cited by

    Periodical cited type(4)

    1. 刘子健,王佳,王华毅,赵聪,吴凡,臧万军. 厦门典型地层组合结构水头压力损失规律研究. 现代隧道技术. 2024(03): 212-219 .
    2. 梁泽田,郑山锁,刘晓航,胡文乐,杜宜阳,宋枳含. 弱渗透性土中地下结构承受水压规律试验研究. 土木工程学报. 2024(08): 83-96 .
    3. 陈博. 空气浮力对质量比较仪的影响. 衡器. 2024(10): 11-13 .
    4. 胥家圣. 多路径下黏土孔压传递机理及浮力试验研究. 铁道建筑技术. 2023(01): 8-11+31 .

    Other cited types(6)

Catalog

    Article views (198) PDF downloads (218) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return