MU Dong-lin, TIAN Ying-hui, WANG Le, XIAO Zhong. Finite element numerical simulation of single pile under horizontal cyclic loading considering softening effect of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 740-748. DOI: 10.11779/CJGE202204017
    Citation: MU Dong-lin, TIAN Ying-hui, WANG Le, XIAO Zhong. Finite element numerical simulation of single pile under horizontal cyclic loading considering softening effect of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 740-748. DOI: 10.11779/CJGE202204017

    Finite element numerical simulation of single pile under horizontal cyclic loading considering softening effect of soft soil

    More Information
    • Received Date: June 03, 2021
    • Available Online: September 22, 2022
    • The single pile foundation in marine environment is subjected to long-term cyclic loading due to wind, waves and currents. Under the cyclic loading, the interface shear stress between pile and soft soil and the shear strength of soft soil around the pile will decrease, thus affecting the bearing characteristics of pile foundation. The cyclic interface friction coefficient between Q235 steel and Tianjin coastal soft clay is obtained through the interface shear tests, and the cyclic softening parameters of Tianjin coastal soft clay are obtained through the dynamic triaxial tests, which provides a method to obtain the parameters for quantifying the cyclic friction characteristics of pile-soil interface and the cyclic softening characteristics of soft soil around piles. On this basis, a finite element model for single pile foundation in undrained soft foundation under horizontal cyclic loading is established with the combination of the constitutive model for soft soil, which can consider the strain softening effect of soft soil. The development laws of pile head displacement and reaction response and pile section bending moment under horizontal cyclic loading are studied while the development law of softening area of soil around the pile under cyclic loading is obtained. The calculated results show that the softening area of soil around the pile foundation develops continuously with the increase of cyclic number. Meanwhile, the softening zone of soil has a high degree of development along the depth under the action of high horizontal cyclic displacement. The position corresponding to the maximum bending moment of pile body moves downward.
    • [1]
      MCCLELLAND B, FOCHT J. Soil modulus for laterally loaded piles[J]. Journal of the Soil Mechanics and Foundations Division, 1956, 82(4): 1–22.
      [2]
      MATLOCK H. Correlation for design of laterally loaded piles in soft clay[C]// Proceeding of 2nd Offshore Technology Conference, 1970, Houston.
      [3]
      MOSS R E S, CALIENDO J A, ANDERSON L R. Investigation of a cyclic laterally loaded model pile group[J]. Soil Dynamics and Earthquake Engineering, 1998, 17(7/8): 519–523.
      [4]
      田平, 王惠初. 黏土中横向周期性荷载桩的PY曲线统一法[J]. 河海大学学报, 1993, 21(1): 9–14. doi: 10.3321/j.issn:1000-1980.1993.01.002

      TIAN Ping, WANG Hui-chu. A unified method of P-Y curves for laterlly and periodically loaded piles in clay[J]. Journal of Hohai University (Natural Sciences), 1993, 21(1): 9–14. (in Chinese) doi: 10.3321/j.issn:1000-1980.1993.01.002
      [5]
      张陈蓉, 俞剑, 黄茂松. 软黏土中水平循环荷载作用下刚性短桩的py曲线分析[J]. 岩土工程学报, 2011, 33(增刊2): 78–82. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2015.htm

      ZHANG Chen-rong, YU Jian, HUANG Mao-song. Py curve analyses of rigid short piles subjected to lateral cyclic load in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 78–82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S2015.htm
      [6]
      Recommended Practice for Planning, Designingand Constructing Fixed Offshore Platforms-Working Stress Design: API RP—2A—WSD[S]. 2002.
      [7]
      码头结构设计规范: JTS 167—2018[S]. 2018.

      Design Code for Wharf Structures: JTS 167—2018[S]. 2018. (in Chinese)
      [8]
      刘晓强, 赵楠, 夏开文, 等. 循环荷载作用下桩周土体强度弱化特性试验研究[J]. 地震工程学报, 2014, 36(4): 987–990. doi: 10.3969/j.issn.1000-0844.2014.04.0987

      LIU Xiao-qiang, ZHAO Nan, XIA Kai-wen, et al. Test and study on strength weakening behavior of soil around a pile under cyclic loading[J]. China Earthquake Engineering Journal, 2014, 36(4): 987–990. (in Chinese) doi: 10.3969/j.issn.1000-0844.2014.04.0987
      [9]
      李森, 俞剑, 黄茂松. 饱和黏土中不同刚度单桩水平循环加载离心试验[J]. 岩土工程学报, 2021, 43(5): 948–954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105024.htm

      LI Sen, YU Jian, HUANG Mao-song. Centrifuge test on single pile with different rigidities in saturated clay under cyclic lateral loading[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 948–954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202105024.htm
      [10]
      朱斌, 杨永垚, 余振刚, 等. 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34(6): 1028–1037. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206012.htm

      ZHU Bin, YANG Yong-yao, YU Zhen-gang, et al. Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1028–1037. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206012.htm
      [11]
      俞剑, 黄茂松, 张陈蓉. 黏土中两种不同直径单桩水平循环加载模型试验与分析[J]. 岩土力学, 2016, 37(4): 973–980. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604009.htm

      YU Jian, HUANG Mao-song, ZHANG Chen-rong. Model tests and analysis of single piles with two different diameters subjected to cyclic lateral loadings in clay[J]. Rock and Soil Mechanics, 2016, 37(4): 973–980. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604009.htm
      [12]
      ZHANG C R, WHITE D, RANDOLPH M. Centrifuge modeling of the cyclic lateral response of a rigid pile in soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7): 717–729. doi: 10.1061/(ASCE)GT.1943-5606.0000482
      [13]
      夏华盛, 张陈蓉, 俞剑, 等. 海上风电桩基水平承载力循环衰减二维简化分析[J]. 岩土力学, 2012, 33(增刊1): 303–308. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1049.htm

      XIA Hua-sheng, ZHANG Chen-rong, YU Jian, et al. 2D simplified analysis of cyclic degradation of lateral bearing capacity for the pile foundation of offshore wind turbine[J]. Rock and Soil Mechanics, 2012, 33(S1): 303–308. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1049.htm
      [14]
      黄茂松, 马昊, 李森, 等. 软黏土中水平受荷桩的静力和循环py曲线[J]. 岩土工程学报, 2017, 39(增刊2): 9–12. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2004.htm

      HUANG Mao-song, MA Hao, LI Sen, et al. Static and cyclic p-y curves for laterally loaded piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 9–12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2017S2004.htm
      [15]
      RAJASHREE S S, SUNDARAVADIVELU R. Degradation model for one-way cyclic lateral load on piles in soft clay[J]. Computers and Geotechnics, 1996, 19(4): 289–300. doi: 10.1016/S0266-352X(96)00008-0
      [16]
      EINAV I, RANDOLPH M F. Combining upper bound and strain path methods for evaluating penetration resistance[J]. International Journal for Numerical Methods in Engineering, 2005, 63(14): 1991–2016. doi: 10.1002/nme.1350
      [17]
      XIAO Z, TIAN Y H, GOURVENEC S. A practical method to evaluate failure envelopes of shallow foundations considering soil strain softening and rate effects[J]. Applied Ocean Research, 2016, 59: 395–407. doi: 10.1016/j.apor.2016.06.015
      [18]
      ZHOU H, RANDOLPH M F. Numerical investigations into cycling of full-flow penetrometers in soft clay[J]. Géotechnique, 2009, 59(10): 801–812. doi: 10.1680/geot.7.00200
      [19]
      CHEUK C Y, WHITE D J. Modelling the dynamic embedment of seabed pipelines[J]. Géotechnique, 2011, 61(1): 39–57. doi: 10.1680/geot.8.P.148
      [20]
      DONNA D A, FERRARI A, LALOUI L. Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures[J]. Canadian Geotechnical Journal, 2016, 53(4): 659–672. doi: 10.1139/cgj-2015-0294
      [21]
      HAMMOUD F, BOUMEKIK A. Experimental study of the behaviour of interfacial shearing between cohesive soils and solid materials at large displacement[J]. Asian Journal of Civil Engineering (Building and Housing), 2006, 7(1): 63–80.
      [22]
      土工试验方法标准: GB/T 50123—2019[S]. 2019.

      Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. 2019. (in Chinese)
      [23]
      DAYAL U, ALLEN J H. The effect of penetration rate on the strength of remolded clay and sand samples[J]. Canadian Geotechnical Journal, 1975, 12(3): 336–348. doi: 10.1139/t75-038
      [24]
      GRAHAM J, CROOKS J H A, BELL A L. Time effects on the stress-strain behaviour of natural soft clays[J]. Géotechnique, 1983, 33(3): 327–340. doi: 10.1680/geot.1983.33.3.327
      [25]
      CHANEY R C, DEMARS K R, BISCONTIN G, et al. Influence of peripheral velocity on vane shear strength of an artificial clay[J]. Geotechnical Testing Journal, 2001, 24(4): 423–429. doi: 10.1520/GTJ11140J
    • Cited by

      Periodical cited type(6)

      1. 王卫东,高文生,龚维明,林毅峰,刘永超,吴江斌. 基础工程技术的发展与创新. 土木工程学报. 2025(02): 97-117 .
      2. 邱尚印,吴君涛,耿少寒,王奎华,黄山,干钢. 带扩大桩靴桩侧同步灌浆预制桩承载力计算分析. 土木工程学报. 2025(05): 79-91 .
      3. 马鹏程,刘润,李国和,苏伟,施威,蒋成强. 成层土中长桩竖向承载激发规律研究. 河北工程大学学报(自然科学版). 2024(02): 23-29 .
      4. 柳鸿博,戴国亮,周凤玺,龚志宇,陈智伟. 黏弹性非饱和土中劲性复合桩纵向动力响应分析. 岩土力学. 2024(05): 1365-1377+1387 .
      5. 赵宇,张浩,江磊,王伟. 桩板式路基引扩孔灌浆后植入桩的承载特性. 公路交通科技. 2024(06): 56-64 .
      6. 张浩,赵宇,王中,刘维正. 芯桩承载扩体预制桩的荷载传递计算分析. 岩土工程学报. 2024(12): 2503-2512 . 本站查看

      Other cited types(5)

    Catalog

      Article views (279) PDF downloads (306) Cited by(11)
      Related

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return