• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Shuai, XU Ying, ZAHNG Yan-bo, YAO Xu-long, LIU Xiang-xin, LIANG Peng. Characteristics and influencing factors for propagation of primary and secondary cracks in sandstone based on CT scan[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 702-711. DOI: 10.11779/CJGE202204013
Citation: WANG Shuai, XU Ying, ZAHNG Yan-bo, YAO Xu-long, LIU Xiang-xin, LIANG Peng. Characteristics and influencing factors for propagation of primary and secondary cracks in sandstone based on CT scan[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 702-711. DOI: 10.11779/CJGE202204013

Characteristics and influencing factors for propagation of primary and secondary cracks in sandstone based on CT scan

More Information
  • Received Date: March 07, 2021
  • Available Online: September 22, 2022
  • In order to study the initiation and propagation of the primary and secondary cracks under compressive stress conditions, the CT tests are conducted on the fracture process of sandstone under uniaxial compression, and the morphological characteristics of the primary and secondary cracks in sandstone are analyzed. Meanwhile, the surface area and volume of the primary cracks and the fractal dimension of the secondary cracks are quantitatively discussed at different deformation stages of sandstone. The length and number of the primary and secondary cracks are calculated at different heights of sandstone using the software Image pro plus 6.0 and Image J to study the propagation and influencing factors of the primary and secondary cracks. The results show that the primary cracks initiate on the sandstone surface in two different directions, and the growth rates of the surface area and the volume of the primary cracks vary with the increase of the load level. Many secondary cracks are produced around the primary cracks. The fractal dimension of the secondary cracks increases nonlinearly with the increase of the load level. Under different load levels, the length and number of the primary and secondary cracks at different heights of sandstone vary. Before the failure of sandstone, the main factor affecting the propagation of the primary and secondary cracks is the length of the primary cracks. After the failure of sandstone, the main factor affecting the propagation of the primary and secondary cracks is the length of the secondary cracks. The conclusion lays a theoretical foundation for the prediction and analysis of rock failure and instability in the future.
  • [1]
    席婧仪, 陈忠辉, 朱帝杰, 等. 岩石不等长裂纹应力强度因子及起裂规律研究[J]. 岩土工程学报, 2015, 37(4): 727–733. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504023.htm

    XI Jing-yi, CHEN Zhong-hui, ZHU Di-jie, et al. Stress intensity factors and initiation of unequal collinear cracks in rock[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 727–733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504023.htm
    [2]
    付金伟, 朱维申, 谢富东, 等. 岩石中三维双裂隙组扩展和贯通过程的试验研究和弹脆性模拟[J]. 岩土力学, 2013, 34(9): 2489–2495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309009.htm

    FU Jin-wei, ZHU Wei-shen, XIE Fu-dong, et al. Experimental studies and elasto-brittle simulation of propagation and coalescence process of two three-dimensional flaws in rocks[J]. Rock and Soil Mechanics, 2013, 34(9): 2489–2495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309009.htm
    [3]
    于庆磊, 杨天鸿, 郑超, 等. 岩石细观结构对其变形强度影响的数值分析[J]. 岩土力学, 2011, 32(11): 3468–3472. doi: 10.3969/j.issn.1000-7598.2011.11.044

    YU Qing-lei, YANG Tian-hong, ZHENG Chao, et al. Numerical analysis of influence of mesostructure on its deformation and strength[J]. Rock and Soil Mechanics, 2011, 32(11): 3468–3472. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.044
    [4]
    LIU S X, WANG Z X, ZHANG L Y. Experimental study on the cracking process of layered shale using X-ray microCT[J]. Energy Exploration & Exploitation, 2018, 36(2): 297–313.
    [5]
    HAERI H, MARJI M F, SHAHRIAR K, et al. On the HDD analysis of micro crack initiation, propagation, and coalescence in brittle materials[J]. Arabian Journal of Geosciences, 2015, 8(5): 2841–2852. doi: 10.1007/s12517-014-1290-5
    [6]
    刘泉声, 魏莱, 刘学伟, 等. 基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J]. 岩石力学与工程学报, 2017, 36(7): 1561–1569. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201707001.htm

    LIU Quan-sheng, WEI Lai, LIU Xue-wei, et al. A revised empirical method for predicting crack initiation based on Griffith strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1561–1569. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201707001.htm
    [7]
    杨圣奇, 吕朝辉, 渠涛. 含单个孔洞大理岩裂纹扩展细观试验和模拟[J]. 中国矿业大学学报, 2009, 38(6): 774–781. doi: 10.3321/j.issn:1000-1964.2009.06.004

    YANG Sheng-qi, LÜ Zhao-hui, QU Tao. Investigations of crack expansion in marble having a single pre-existing hole: experiment and simulations[J]. Journal of China University of Mining and Technology, 2009, 38(6): 774–781. (in Chinese) doi: 10.3321/j.issn:1000-1964.2009.06.004
    [8]
    黄彦华, 杨圣奇. 孔槽式圆盘破坏特性与裂纹扩展机制颗粒流分析[J]. 岩土力学, 2014, 35(8): 2269–2277, 2285. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408021.htm

    HUANG Yan-hua, YANG Sheng-qi. Particle flow simulation of fracture characteristics and crack propagation mechanism of holed-cracked Brazilian disc specimen[J]. Rock and Soil Mechanics, 2014, 35(8): 2269–2277, 2285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408021.htm
    [9]
    师访, 高峰, 李玺茹, 等. 模拟岩石压剪状态下主次裂纹萌生开裂的扩展有限元法[J]. 岩土力学, 2014, 35(6): 1809–1817. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406046.htm

    SHI Fang, GAO Feng, LI Xi-ru, et al. Modeling initiation and propagation of main and secondary cracks of rock under combined compression and shear loading using extended finite element method[J]. Rock and Soil Mechanics, 2014, 35(6): 1809–1817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406046.htm
    [10]
    ZHAO Z, ZHOU X P. Digital energy grade‐based approach for crack path prediction based on 2D X‐ray CT images of geomaterials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(6): 1292–1307.
    [11]
    郎颖娴, 梁正召, 董卓. 玄武岩三维细观孔隙模型重构与直接拉伸数值试验[J]. 工程科学学报, 2019, 41(8): 997–1006. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201908005.htm

    LANG Ying-xian, LIANG Zheng-zhao, DONG Zhuo. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests[J]. Chinese Journal of Engineering, 2019, 41(8): 997–1006. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201908005.htm
    [12]
    DUAN Y, LI X, ZHENG B, et al. Cracking evolution and failure characteristics of Longmaxi shale under uniaxial compression using real-time computed tomography scanning[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3003–3015. doi: 10.1007/s00603-019-01765-0
    [13]
    GHAMGOSAR M, ERARSLAN N, WILLIAMS D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings[J]. Experimental Mechanics, 2017, 57(1): 97–113. doi: 10.1007/s11340-016-0216-4
    [14]
    GUPTA N, MISHRA B. Experimental investigation of the influence of bedding planes and differential stress on microcrack propagation in shale using X-ray CT scan[J]. Geotechnical and Geological Engineering, 2021, 39(1): 213–236. doi: 10.1007/s10706-020-01487-z
    [15]
    KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138–154. doi: 10.1016/j.fuel.2018.05.040
    [16]
    付裕, 陈新, 冯中亮. 基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报, 2020, 45(2): 568–578. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002006.htm

    FU Yu, CHEN Xin, FENG Zhong-liang. Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society, 2020, 45(2): 568–578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002006.htm
    [17]
    朱红光, 谢和平, 易成, 等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报, 2011, 30(6): 1230–1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106022.htm

    ZHU Hong-guang, XIE He-ping, YI Cheng, et al. CT identification of microcracks evolution for rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1230–1238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106022.htm
    [18]
    YANG B C, XUE L, ZHANG K. X-ray micro-computed tomography study of the propagation of cracks in shale during uniaxial compression[J]. Environmental Earth Sciences, 2018, 77(18): 1–9.
    [19]
    张萍, 刘冠国, 庞超明, 等. 试件尺寸对X-CT测试效果影响规律研究[J]. 混凝土, 2013(11): 56–57, 60. doi: 10.3969/j.issn.1002-3550.2013.11.015

    ZHANG Ping, LIU Guan-guo, PANG Chao-ming, et al. Study of specimen size effects on the X -CT test results[J]. Concrete, 2013(11): 56–57, 60. (in Chinese) doi: 10.3969/j.issn.1002-3550.2013.11.015
    [20]
    张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659–2671. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110005.htm

    ZHANG Yan-bo, XU Yue-dong, LIU Xiang-xin, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three- dimensional rock fractures based on CT[J]. Rock and Soil Mechanics, 2021, 42(10): 2659–2671. (in Chinese)). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110005.htm
    [21]
    CHEN W X, HE X Q, LIU M J, et al. Meso- and macro-behaviour of coal rock: observations and constitutive model development[J]. International Journal of Mining, Reclamation and Environment, 2016, 30(1): 13–24. doi: 10.1080/17480930.2013.878561
    [22]
    邓远刚, 王述红, 孟嫣然, 等. 基于CT扫描的致密砂岩脆性破坏裂纹扩展规律研究[J]. 水利与建筑工程学报, 2017, 15(4): 39–43. doi: 10.3969/j.issn.1672-1144.2017.04.007

    DENG Yuan-gang, WANG Shu-hong, MENG Yan-ran, et al. Crack evolution of the tight sandstone of brittle failure based on CT technology[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(4): 39–43. (in Chinese) doi: 10.3969/j.issn.1672-1144.2017.04.007
  • Cited by

    Periodical cited type(24)

    1. 罗庆斐,袁松,袁飞云,周道良,王峥峥. 不同转向角度曲线隧道穿越走滑断层力学行为. 大连理工大学学报. 2025(02): 171-180 .
    2. 吴斌,袁松,康泽洲,罗庆斐,王峥峥. 地震和断层错动共同作用下大转向曲线隧道力学行为研究. 震灾防御技术. 2025(01): 153-162 .
    3. 张恒,徐龙军,彭龙强,谢礼立. 跨断层铁路隧道精细化建模与力学分析. 地震工程与工程振动. 2024(05): 1-12 .
    4. 袁松,王希宝,袁飞云,罗庆斐,肖锋,王峥峥. 不同类型断层错动下半圆形曲线隧道力学行为. 公路. 2024(12): 440-449 .
    5. 韩俊艳,赵文乐,帅义,侯本伟,郭富强,杜修力. 逆断层作用下局部腐蚀埋地管道的失效模式研究. 防灾减灾工程学报. 2024(06): 1386-1397 .
    6. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    7. 付艳斌,王福道,陈湘生,陆岸典,沈翔,李旭辉,王贝凌,洪成雨. 破碎带地层盾构隧道建造关键问题. 铁道标准设计. 2023(01): 25-33 .
    8. 章玉伟,徐泽鑫,谢远,邱军领,杨桃,谢永利. 断层破碎带隧道围岩敏感性及沉降控制分析. 科学技术与工程. 2023(08): 3493-3501 .
    9. 张玉芳,袁坤,周文皎,范家玮. 门源地震对跨冷龙岭断层的大梁隧道结构变形特征和地表裂缝分布规律研究. 岩石力学与工程学报. 2023(05): 1055-1069 .
    10. 陈斌辉. 跨活断层公路隧道损伤规律研究. 河南科技. 2023(10): 59-62 .
    11. 肖文斌,谢印标,郑扬,武科,陈榕,李秋雷,程睿哲. 活动断层下城市地铁隧道变形破坏与损伤. 山东大学学报(工学版). 2023(03): 1-13 .
    12. 王志岗,陶连金,石城,安韶. 逆断层错动作用下考虑柔性接头的综合管廊结构力学行为研究. 铁道科学与工程学报. 2023(06): 2256-2267 .
    13. 刘汉东,赵亚文,杨长林,徐红超,李冬冬. 穿越活断层倒虹吸结构变形影响敏感性研究. 华北水利水电大学学报(自然科学版). 2023(03): 81-88 .
    14. 张卜,姬若愚,钟紫蓝,许成顺,杜修力. 穿越岩土交界面竖井结构水平地震损伤破坏模式. 隧道与地下工程灾害防治. 2023(03): 27-40 .
    15. 史新伟,冯新,范哲. 逆断层作用下复合衬砌输水隧洞损伤演化分析. 防灾减灾工程学报. 2023(05): 1132-1140 .
    16. 周光新,盛谦,崔臻,王天强,马亚丽娜,付兴伟. 走滑断层错动影响下跨活断层铰接隧洞破坏机制模型试验. 岩土力学. 2022(01): 37-50 .
    17. 董航凯. 断裂作用对输水管道的影响效应研究. 水利与建筑工程学报. 2022(02): 66-71 .
    18. 崔臻,盛谦,李建贺,付兴伟. 蠕滑错断-强震时序作用下跨活断裂隧道变形破坏机制初步研究. 岩土力学. 2022(05): 1364-1373 .
    19. 王杰,盛俭,赵梦丹,王欣宇. 康西瓦断裂错动对近断层隧道影响的数值模拟分析. 地震工程与工程振动. 2022(03): 235-242 .
    20. 李翔,孙文昊,孙州,陈立保. 盾构法隧道穿越活动断裂带方案探讨. 隧道建设(中英文). 2022(S1): 369-375 .
    21. 姜久纯. 黏滑错动下地铁隧道结构破坏特征及设防措施. 西安科技大学学报. 2021(03): 474-480 .
    22. 王鸿儒,钟紫蓝,赵密,汪振,赵旭,杜修力. 走滑断层黏滑错动下隧道破坏的模型试验研究. 北京工业大学学报. 2021(07): 691-701 .
    23. 陈立保,孙文昊,孙州,武哲书. 胶州湾第二海底隧道跨断裂带抗错方案研究. 铁道标准设计. 2021(10): 116-122+166 .
    24. 王杰,盛俭,赵梦丹,王欣宇. 断层错动对隧道工程影响研究的若干进展. 防灾科技学院学报. 2021(04): 34-42 .

    Other cited types(26)

Catalog

    Article views PDF downloads Cited by(50)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return