Citation: | WANG Shuai, XU Ying, ZAHNG Yan-bo, YAO Xu-long, LIU Xiang-xin, LIANG Peng. Characteristics and influencing factors for propagation of primary and secondary cracks in sandstone based on CT scan[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 702-711. DOI: 10.11779/CJGE202204013 |
[1] |
席婧仪, 陈忠辉, 朱帝杰, 等. 岩石不等长裂纹应力强度因子及起裂规律研究[J]. 岩土工程学报, 2015, 37(4): 727–733. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504023.htm
XI Jing-yi, CHEN Zhong-hui, ZHU Di-jie, et al. Stress intensity factors and initiation of unequal collinear cracks in rock[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 727–733. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504023.htm
|
[2] |
付金伟, 朱维申, 谢富东, 等. 岩石中三维双裂隙组扩展和贯通过程的试验研究和弹脆性模拟[J]. 岩土力学, 2013, 34(9): 2489–2495. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309009.htm
FU Jin-wei, ZHU Wei-shen, XIE Fu-dong, et al. Experimental studies and elasto-brittle simulation of propagation and coalescence process of two three-dimensional flaws in rocks[J]. Rock and Soil Mechanics, 2013, 34(9): 2489–2495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309009.htm
|
[3] |
于庆磊, 杨天鸿, 郑超, 等. 岩石细观结构对其变形强度影响的数值分析[J]. 岩土力学, 2011, 32(11): 3468–3472. doi: 10.3969/j.issn.1000-7598.2011.11.044
YU Qing-lei, YANG Tian-hong, ZHENG Chao, et al. Numerical analysis of influence of mesostructure on its deformation and strength[J]. Rock and Soil Mechanics, 2011, 32(11): 3468–3472. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.044
|
[4] |
LIU S X, WANG Z X, ZHANG L Y. Experimental study on the cracking process of layered shale using X-ray microCT[J]. Energy Exploration & Exploitation, 2018, 36(2): 297–313.
|
[5] |
HAERI H, MARJI M F, SHAHRIAR K, et al. On the HDD analysis of micro crack initiation, propagation, and coalescence in brittle materials[J]. Arabian Journal of Geosciences, 2015, 8(5): 2841–2852. doi: 10.1007/s12517-014-1290-5
|
[6] |
刘泉声, 魏莱, 刘学伟, 等. 基于Griffith强度理论的岩石裂纹起裂经验预测方法研究[J]. 岩石力学与工程学报, 2017, 36(7): 1561–1569. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201707001.htm
LIU Quan-sheng, WEI Lai, LIU Xue-wei, et al. A revised empirical method for predicting crack initiation based on Griffith strength criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7): 1561–1569. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201707001.htm
|
[7] |
杨圣奇, 吕朝辉, 渠涛. 含单个孔洞大理岩裂纹扩展细观试验和模拟[J]. 中国矿业大学学报, 2009, 38(6): 774–781. doi: 10.3321/j.issn:1000-1964.2009.06.004
YANG Sheng-qi, LÜ Zhao-hui, QU Tao. Investigations of crack expansion in marble having a single pre-existing hole: experiment and simulations[J]. Journal of China University of Mining and Technology, 2009, 38(6): 774–781. (in Chinese) doi: 10.3321/j.issn:1000-1964.2009.06.004
|
[8] |
黄彦华, 杨圣奇. 孔槽式圆盘破坏特性与裂纹扩展机制颗粒流分析[J]. 岩土力学, 2014, 35(8): 2269–2277, 2285. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408021.htm
HUANG Yan-hua, YANG Sheng-qi. Particle flow simulation of fracture characteristics and crack propagation mechanism of holed-cracked Brazilian disc specimen[J]. Rock and Soil Mechanics, 2014, 35(8): 2269–2277, 2285. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408021.htm
|
[9] |
师访, 高峰, 李玺茹, 等. 模拟岩石压剪状态下主次裂纹萌生开裂的扩展有限元法[J]. 岩土力学, 2014, 35(6): 1809–1817. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406046.htm
SHI Fang, GAO Feng, LI Xi-ru, et al. Modeling initiation and propagation of main and secondary cracks of rock under combined compression and shear loading using extended finite element method[J]. Rock and Soil Mechanics, 2014, 35(6): 1809–1817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201406046.htm
|
[10] |
ZHAO Z, ZHOU X P. Digital energy grade‐based approach for crack path prediction based on 2D X‐ray CT images of geomaterials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(6): 1292–1307.
|
[11] |
郎颖娴, 梁正召, 董卓. 玄武岩三维细观孔隙模型重构与直接拉伸数值试验[J]. 工程科学学报, 2019, 41(8): 997–1006. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201908005.htm
LANG Ying-xian, LIANG Zheng-zhao, DONG Zhuo. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests[J]. Chinese Journal of Engineering, 2019, 41(8): 997–1006. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201908005.htm
|
[12] |
DUAN Y, LI X, ZHENG B, et al. Cracking evolution and failure characteristics of Longmaxi shale under uniaxial compression using real-time computed tomography scanning[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3003–3015. doi: 10.1007/s00603-019-01765-0
|
[13] |
GHAMGOSAR M, ERARSLAN N, WILLIAMS D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings[J]. Experimental Mechanics, 2017, 57(1): 97–113. doi: 10.1007/s11340-016-0216-4
|
[14] |
GUPTA N, MISHRA B. Experimental investigation of the influence of bedding planes and differential stress on microcrack propagation in shale using X-ray CT scan[J]. Geotechnical and Geological Engineering, 2021, 39(1): 213–236. doi: 10.1007/s10706-020-01487-z
|
[15] |
KUMARI W G P, RANJITH P G, PERERA M S A, et al. Hydraulic fracturing under high temperature and pressure conditions with micro CT applications: Geothermal energy from hot dry rocks[J]. Fuel, 2018, 230: 138–154. doi: 10.1016/j.fuel.2018.05.040
|
[16] |
付裕, 陈新, 冯中亮. 基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报, 2020, 45(2): 568–578. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002006.htm
FU Yu, CHEN Xin, FENG Zhong-liang. Characteristics of coal-rock fractures based on CT scanning and its influence on failure modes[J]. Journal of China Coal Society, 2020, 45(2): 568–578. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202002006.htm
|
[17] |
朱红光, 谢和平, 易成, 等. 岩石材料微裂隙演化的CT识别[J]. 岩石力学与工程学报, 2011, 30(6): 1230–1238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106022.htm
ZHU Hong-guang, XIE He-ping, YI Cheng, et al. CT identification of microcracks evolution for rock materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1230–1238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201106022.htm
|
[18] |
YANG B C, XUE L, ZHANG K. X-ray micro-computed tomography study of the propagation of cracks in shale during uniaxial compression[J]. Environmental Earth Sciences, 2018, 77(18): 1–9.
|
[19] |
张萍, 刘冠国, 庞超明, 等. 试件尺寸对X-CT测试效果影响规律研究[J]. 混凝土, 2013(11): 56–57, 60. doi: 10.3969/j.issn.1002-3550.2013.11.015
ZHANG Ping, LIU Guan-guo, PANG Chao-ming, et al. Study of specimen size effects on the X -CT test results[J]. Concrete, 2013(11): 56–57, 60. (in Chinese) doi: 10.3969/j.issn.1002-3550.2013.11.015
|
[20] |
张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659–2671. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110005.htm
ZHANG Yan-bo, XU Yue-dong, LIU Xiang-xin, et al. Quantitative characterization and mesoscopic study of propagation and evolution of three- dimensional rock fractures based on CT[J]. Rock and Soil Mechanics, 2021, 42(10): 2659–2671. (in Chinese)). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202110005.htm
|
[21] |
CHEN W X, HE X Q, LIU M J, et al. Meso- and macro-behaviour of coal rock: observations and constitutive model development[J]. International Journal of Mining, Reclamation and Environment, 2016, 30(1): 13–24. doi: 10.1080/17480930.2013.878561
|
[22] |
邓远刚, 王述红, 孟嫣然, 等. 基于CT扫描的致密砂岩脆性破坏裂纹扩展规律研究[J]. 水利与建筑工程学报, 2017, 15(4): 39–43. doi: 10.3969/j.issn.1672-1144.2017.04.007
DENG Yuan-gang, WANG Shu-hong, MENG Yan-ran, et al. Crack evolution of the tight sandstone of brittle failure based on CT technology[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(4): 39–43. (in Chinese) doi: 10.3969/j.issn.1672-1144.2017.04.007
|