Citation: | DING Yu, WEI Wei-bing, PAN Bo, HUANG Qun-zhi, LIU Zhen-xian, LIU Da-xiang. Statistical damage model for fiber-reinforced vegetation concrete substrate[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 652-659. DOI: 10.11779/CJGE202204007 |
[1] |
夏振尧, 许文年, 王乐华. 植被混凝土生态护坡基材初期强度特性研究[J]. 岩土力学, 2011, 32(6): 1719–1724. doi: 10.3969/j.issn.1000-7598.2011.06.021
XIA Zhen-yao, XU Wen-nian, WANG Le-hua. Research on characteristics of early strength of ecological slope-protected base material of vegetation-growing concrete[J]. Rock and Soil Mechanics, 2011, 32(6): 1719–1724. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.021
|
[2] |
水电工程陡边坡植被混凝土生态修复技术规范: NB/T 35082—2016[S]. 2016.
Technical Code for Eco-Restoration of Vegetation Concrete on Steep Slope of Hydropower Projects: NB/T 35082—2016[S]. 2016. (in Chinese)
|
[3] |
潘波, 丁瑜, 黄晓乐, 等. 棕榈纤维加筋植被混凝土三轴试验研究[J]. 硅酸盐通报, 2020, 39(4): 1153–1159. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202004020.htm
PAN Bo, DING Yu, HUANG Xiao-le, et al. Triaxial experimental study on palm fiber-reinforced vegetation concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(4): 1153–1159. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202004020.htm
|
[4] |
沈珠江, 胡再强. 黄土的二元介质模型[J]. 水利学报, 2003(7): 1–6. doi: 10.3321/j.issn:0559-9350.2003.07.001
SHEN Zhu-jiang, HU Zai-qiang. Binary medium model for loess[J]. Journal of Hydraulic Engineering, 2003(7): 1–6. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.07.001
|
[5] |
KRAJCINOVIC D, SILVA M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids and Structures, 1982, 18(7): 551–562. doi: 10.1016/0020-7683(82)90039-7
|
[6] |
KUMAR PANDEY P, SINGH K K, GAURAV A. Mechanical properties of woven GFRP angle ply laminates: a statistical analysis based on two parameters weibull distribution[J]. Materials Today: Proceedings, 2020, 22: 1318–1325. doi: 10.1016/j.matpr.2020.01.424
|
[7] |
CUI T, HE H X, YAN W M, et al. Compression damage constitutive model of hybrid fiber reinforced concrete and its experimental verification[J]. Construction and Building Materials, 2020, 264: 1–11.
|
[8] |
朱振南, 蒋国盛, 田红, 等. 基于Normal分布的岩石统计热损伤本构模型研究[J]. 中南大学学报(自然科学版), 2019, 50(6): 1411–1418. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201906020.htm
ZHU Zhen-nan, JIANG Guo-sheng, TIAN Hong, et al. Study on statistical thermal damage constitutive model of rock based on normal distribution[J]. Journal of Central South University (Science and Technology), 2019, 50(6): 1411–1418. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201906020.htm
|
[9] |
张明, 王菲, 杨强. 基于三轴压缩试验的岩石统计损伤本构模型[J]. 岩土工程学报, 2013, 35(11): 1965–1971. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311003.htm
ZHANG Ming, WANG Fei, YANG Qiang. Statistical damage constitutive model for rocks based on triaxial compression tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 1965–1971. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201311003.htm
|
[10] |
DENG J, GU D S. On a statistical damage constitutive model for rock materials[J]. Computers & Geosciences, 2011, 37(2): 122–128.
|
[11] |
周永强, 盛谦, 冷先伦, 等. 考虑残余强度和阈值影响的岩石弹性损伤统计模型[J]. 长江科学院院报, 2016, 33(3): 48–53. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201603013.htm
ZHOU Yong-qiang, SHENG Qian, LENG Xian-lun, et al. Statistical constitutive model of elastic damage for rock considering residual strength and threshold[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(3): 48–53. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201603013.htm
|
[12] |
JEAN L. How to use damage mechanics[J]. Nuclear Engineering and Design, 1984, 80(2): 233–245. doi: 10.1016/0029-5493(84)90169-9
|
[13] |
ZHAO H, SHI C J, ZHAO M H, et al. Statistical damage constitutive model for rocks considering residual strength[J]. International Journal of Geomechanics, 2017, 17(1): 04016033. doi: 10.1061/(ASCE)GM.1943-5622.0000680
|
[14] |
DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, 1970, 96(5): 1629–1653.
|
[15] |
胡亚元, 余启致, 张超杰, 等. 纤维加筋淤泥固化土的邓肯-张模型[J]. 浙江大学学报(工学版), 2017, 51(8): 1500–1508. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201708004.htm
HU Ya-yuan, YU Qi-zhi, ZHANG Chao-jie, et al. Duncan-Chang model for fiber reinforced solidified sludge[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(8): 1500–1508. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201708004.htm
|
[16] |
XIE S J, LIN H, WANG Y X, et al. A statistical damage constitutive model considering whole joint shear deformation[J]. International Journal of Damage Mechanics, 2020, 29(6): 988–1008.
|
[17] |
李树春, 许江, 李克钢, 等. 基于Weibull分布的岩石损伤本构模型研究[J]. 湖南科技大学学报(自然科学版), 2007, 22(4): 65–68. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200704016.htm
LI Shu-chun, XU Jiang, LI Ke-gang, et al. Study on damages constitutive model of rocks based on weibull distributing[J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2007, 22(4): 65–68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200704016.htm
|
[18] |
KAWAMOTO T, ICHIKAWA Y, KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(1): 1–30.
|
[19] |
XU Y, YANG R Z. Dynamic mechanics and damage evolution characteristics of rubber cement mortar under different curing humidity levels[J]. Journal of Materials in Civil Engineering, 2020, 32(10): 04020309.
|
1. |
原媛,刘丝丝,崔勇涛,赖智龙,廖德祥. 生物酶用于河湖底泥脱水减量调理的对比研究. 水资源与水工程学报. 2025(01): 154-162 .
![]() | |
2. |
汤连生,陈洋,曾显帅,程子华,丁威涯. 聚合氯化铝预处理污泥联合脱水有效性及机理. 中山大学学报(自然科学版)(中英文). 2024(04): 37-46 .
![]() |