• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Hui-mei, CHEN Shi-guan, WANG Lei, CHENG Shu-fan, YANG Geng-she, SHEN Yan-jun. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622-631. DOI: 10.11779/CJGE202204004
Citation: ZHANG Hui-mei, CHEN Shi-guan, WANG Lei, CHENG Shu-fan, YANG Geng-she, SHEN Yan-jun. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622-631. DOI: 10.11779/CJGE202204004

Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact

More Information
  • Received Date: June 09, 2021
  • Available Online: September 22, 2022
  • To explore the energy dissipation law and failure mode of soft rock interlayer in western mining areas of China after dynamic disturbance, the dynamic impact failure tests on weakly cemented red sandstone are carried out by using the separated Hopkinson compression bar device. Under the impact of this red sandstone under different loading rates, different times of disturbance and whether there is the disturbance or not, the energy dissipation and fractal characteristics of the samples during the same loading rate impact failure are analyzed. The experimental results show that under different disturbance impact rates, with the increase of disturbance impact times, the reflection energy increases, while the transmission energy and dissipation energy decrease. The reflection energy of the samples under the impact of high-speed disturbance is higher than that of the low-speed disturbance impact, while the dissipative energy is the opposite. Moreover, the dissipative energy of the samples under the impact of low-speed rate disturbance is opposite. The energy dissipation rate and energy dissipation density are higher than those of the high-speed disturbance impact, which indicates that the energy utilization rate of the samples is higher under the impact of low-speed disturbance. In the impact failure tests, with the increase of the number of disturbance impact, the fragmentation degree of the sample after the low-speed rate disturbance is more serious than that of the undisturbed and high-speed rate disturbance. The low-speed rate disturbance of fractal dimension Db > undisturbed > high-speed rate disturbance shows that the fractal dimension is positively correlated with the number of disturbance shocks. The results show that the impact rate is negatively correlated with the disturbance. Under the same number of disturbance impact, the cumulative dissipation energy and energy density of Db of the low-speed rate-disturbed samples are higher than those of the high-speed disturbed samples, while the cumulative reflection energy is opposite.
  • [1]
    FAN L F, REN F, MA G W. Experimental study on viscoelastic behavior of sedimentary rock under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 433–438. doi: 10.1007/s00603-011-0197-7
    [2]
    LI X B, WENG L. Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance[J]. Tunnelling and Underground Space Technology, 2016, 54: 61–72. doi: 10.1016/j.tust.2016.01.028
    [3]
    WENG L, HUANG L Q, TAHERI A, et al. Rockburst characteristics and numerical simulation based on a strain energy density index: a case study of a roadway in Linglong gold mine, China[J]. Tunnelling and Underground Space Technology, 2017, 69: 223–232. doi: 10.1016/j.tust.2017.05.011
    [4]
    谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996.

    XIE He-ping. Fractal—Introduction to Rock Mechanics[M]. Beijing: Science Press, 1996. (in Chinese)
    [5]
    WENG L, WU Z J, LIU Q S, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures[J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
    [6]
    WANG L, QIN Y, JIA H B, et al. Study on mechanical properties and energy dissipation of frozen sandstone under shock loading[J]. Shock and Vibration, 2020(4): 8893128.
    [7]
    赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报(工程科学版), 2008, 40(2): 26–31. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm

    ZHAO Zhong-hu, XIE He-ping. Energy transfer and energy dissipation in rock deformation and fracture[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(2): 26–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm
    [8]
    黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究[J]. 煤炭学报, 2011, 36(12): 2007– 2011. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112009.htm

    LI Li-yun, XU Zhi-qiang, XIE He-ping, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112009.htm
    [9]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE He-ping, JU Yang, LI Li-yun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.001
    [10]
    LUNDBERG B, OKROUHLIK M. Efficiency of a percussive rock drilling process with consideration of wave energy radiation into the rock[J]. International Journal of Impact Engineering, 2006, 32(10): 1573–1583. doi: 10.1016/j.ijimpeng.2005.02.001
    [11]
    HONG L, ZHOU Z L, YIN T B, et al. Energy consumption in rock fragmentation at intermediate strain rate[J]. Journal of Central South University of Technology, 2009, 16(4): 677–682. doi: 10.1007/s11771-009-0112-5
    [12]
    李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7): 1387–1395. doi: 10.3321/j.issn:1000-6915.2008.07.011

    LI Xi-bing, ZHOU Zi-long, YE Zhou-yuan, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387–1395. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.07.011
    [13]
    FENG J J, WANG E Y, SHEN R X, et al. Investigation on energy dissipation and its mechanism of coal under dynamic loads[J]. Geomechanics and Engineering, 2016, 11(5): 657–670. doi: 10.12989/gae.2016.11.5.657
    [14]
    MILLON O, RUIZ-RIPOLL M L, HOERTH T. Analysis of the behavior of sedimentary rocks under impact loading[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4257–4272. doi: 10.1007/s00603-016-1010-4
    [15]
    GONG F Q, YE H, LUO Y. The effect of high loading rate on the behaviour and mechanical properties of coal-rock combined body[J]. Shock and Vibration, 2018(6): 1–9.
    [16]
    张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究[J]. 采矿与安全工程学报, 2016, 33(2): 375–380. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602030.htm

    ZHANG Wen-qing, SHI Bi-ming, MU Chao-min. Experimental research on failure and energy dissipation law of coal under impact load[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 375–380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602030.htm
    [17]
    王利, 高谦. 基于损伤能量耗散的岩体块度分布预测[J]. 岩石力学与工程学报, 2007, 26(6): 1202–1211. doi: 10.3321/j.issn:1000-6915.2007.06.015

    WANG Li, GAO Qian. Fragmentation distribution prediction of rock based on damage energy dissipation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1202–1211. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.06.015
    [18]
    李成杰, 徐颖, 张宇婷, 等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报, 2019, 38(11): 2231–2241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911008.htm

    LI Cheng-jie, XU Ying, ZHANG Yu-ting, et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2231–2241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911008.htm
    [19]
    李成杰, 徐颖, 叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J]. 岩土工程学报, 2020, 42(5): 981–988. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005027.htm

    LI Cheng-jie, XU Ying, YE Zhou-yuan. Energy dissipation and crushing characteristics of coal-rock-like combined body under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 981–988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005027.htm
    [20]
    戴兵, 罗鑫尧, 单启伟, 等. 循环冲击荷载下含孔洞岩石损伤特性与能量耗散分析[J]. 中国安全科学学报, 2020, 30(7): 69–77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202007011.htm

    DAI Bing, LUO Xin-yao, SHAN Qi-wei, et al. Analysis on damage characteristics and energy dissipation of rock with a single hole under cyclic impact loads[J]. China Safety Science Journal, 2020, 30(7): 69–77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202007011.htm
    [21]
    邓树新, 王明洋, 李杰, 等. 冲击扰动下滑移型岩爆的模拟试验及机理探讨[J]. 岩土工程学报, 2020, 42(12): 2215–2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm

    DENG Shu-xin, WANG Ming-yang, LI Jie, et al. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215–2221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm
    [22]
    谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729–1740. doi: 10.3321/j.issn:1000-6915.2008.09.001

    XIE He-ping, JU Yang, LI Li-yun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729–1740. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.001
    [23]
    谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565–3570. doi: 10.3321/j.issn:1000-6915.2004.21.001

    XIE He-ping, PENG Rui-dong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565–3570. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.21.001
    [24]
    马芹永, 高常辉. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. 岩土力学, 2018, 39(11): 3921–3928, 3968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm

    MA Qin-yong, GAO Chang-hui. Energy absorption and fractal characteristics of basalt fiber-reinforced cement-soil under impact loads[J]. Rock and Soil Mechanics, 2018, 39(11): 3921–3928, 3968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm
    [25]
    金解放, 吴越, 张睿, 等. 冲击速度和轴向静载对红砂岩破碎及能耗的影响[J]. 爆炸与冲击, 2020, 40(10): 42–55. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202010004.htm

    JIN Jie-fang, WU Yue, ZHANG Rui, et al. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion and Shock Waves, 2020, 40(10): 42–55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202010004.htm
    [26]
    平琦, 马芹永, 袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报, 2013, 30(3): 401–407. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm

    PING Qi, MA Qin-yong, YUAN Pu. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401–407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm
  • Cited by

    Periodical cited type(14)

    1. 姜淑印,李向阳,杨超,尹磊建,王佳奇,朱利勇. 考虑析水效应的PPGF浆液扩散规律与抗分散特征. 金属矿山. 2025(04): 43-53 .
    2. 蔡跃辉. 动水注浆堵漏技术研究现状与发展情况. 科技创新与应用. 2025(13): 177-180 .
    3. 李海燕,夏茂哲,张锟,张波,孙怀凤,赵国东,韩俊飞,刘功杰,贺恩磊. 岩溶凹陷式露天矿山大流量涌水治理技术. 煤炭科学技术. 2024(01): 267-279 .
    4. 林久卿,牛昊,刘致延,李晓亮,王彦哲,李召峰,陈经棚. 水泥基矽土注浆材料抗海水侵蚀性能研究. 防灾减灾工程学报. 2024(03): 551-559 .
    5. 付贵永,肖杨,史金权,周航,刘汉龙. 干湿循环下EICP联合黄原胶加固钙质粉土劣化特性试验研究. 岩土工程学报. 2024(11): 2341-2351 . 本站查看
    6. 陈亮,孙晨,王雷雨,邵晓妹,胡靖宇. 引水隧洞超前预处理灌浆材料研究与应用进展. 南水北调与水利科技(中英文). 2024(06): 1181-1188 .
    7. 雷华阳,施福硕,刘旭,崔溦. 砂性地层中植物胶改性泥浆性质及渗透成膜试验研究. 岩土工程学报. 2023(02): 394-401 . 本站查看
    8. 张胜杰,王鸥,王天亮,王林,刘松松. 黄原胶及瓜尔胶改良尾矿砂强度特性及微观机制. 工程地质学报. 2023(02): 441-448 .
    9. 周中,邓卓湘,鄢海涛,张俊杰. 岩溶区隧道新型绿色注浆材料试验研究. 铁道工程学报. 2023(07): 63-68 .
    10. 吴龙骥,吴志军,翁磊. 聚丙烯酸酯改性水泥注浆材料力学性能与微观结构研究. 力学与实践. 2023(05): 999-1009 .
    11. 夏冲,李传贵,冯啸,赵宏魁,张思峰,武剑峰. 水泥粉煤灰-改性水玻璃注浆材料试验研究与应用. 山东大学学报(工学版). 2022(01): 66-73+84 .
    12. 付宏渊,查焕奕,潘浩强,曾铃,刘杰. 生物聚合物改良预崩解炭质泥岩水稳性及冲刷试验研究. 中南大学学报(自然科学版). 2022(07): 2633-2644 .
    13. 张昊,胡相明,王伟,梁运涛,王兆喜,刘金举,白光星,赵艳云,吴明跃. 黄原胶和氧化镁改性黏土-水泥基新型喷涂堵漏风材料的制备及特征. 煤炭学报. 2021(06): 1768-1780 .
    14. 康正斌,李小强,巩越. 强渗透涌水地层注浆新材料的配制与工程特性研究. 新型建筑材料. 2021(12): 19-23 .

    Other cited types(16)

Catalog

    Article views PDF downloads Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return