Citation: | QIN You, MA Weijia, ZHAO Kai, WU Qi, CHEN Guoxing. Volumetric strain generation of saturated coral sand subjected to various stress paths of cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1294-1302. DOI: 10.11779/CJGE20220340 |
[1] |
YOUD T L, CARTER B L. Influence of soil softening and liquefaction on spectral acceleration[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(7): 811-825. doi: 10.1061/(ASCE)1090-0241(2005)131:7(811)
|
[2] |
BRAY J D, MACEDO J. 6th Ishihara lecture: simplified procedure for estimating liquefaction-induced building settlement[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 215-231. doi: 10.1016/j.soildyn.2017.08.026
|
[3] |
BULLOCK Z, DASHTI S, LIEL A B, et al. Probabilistic liquefaction triggering and manifestation models based on cumulative absolute velocity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2022, 148(3): 04021196. doi: 10.1061/(ASCE)GT.1943-5606.0002729
|
[4] |
王忠涛, 刘鹏, 杨庆. 非标准椭圆形应力路径下饱和松砂动强度的试验研究[J]. 岩土工程学报, 2016, 38(6): 1133-1139. doi: 10.11779/CJGE201606021
WANG Zhongtao, LIU Peng, YANG Qing. Dynamic strength of saturated loose sand under nonstandard elliptical stress path[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(6): 1133-1139. (in Chinese) doi: 10.11779/CJGE201606021
|
[5] |
张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50. http://www.cgejournal.com/cn/article/id/14487
ZHANG Jianmin. New advances in basic theories of sand dynamics[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 1-50. (in Chinese) http://www.cgejournal.com/cn/article/id/14487
|
[6] |
CHEN G X, ZHAO D F, CHEN W Y, et al. Excess pore-water pressure generation in cyclic undrained testing[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019022. doi: 10.1061/(ASCE)GT.1943-5606.0002057
|
[7] |
FINN W. Liquefaction potential: developments since 1976[J]. Proceedings International Conference Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 1981, 2: 655-681. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDC198202003.htm
|
[8] |
WONG R, ARTHUR J. Sand sheared by stresses with cyclic variations in direction[J]. Geotechnique, 1986, 36: 215-226. doi: 10.1680/geot.1986.36.2.215
|
[9] |
LIU H L, ZHOU Y D, GAO Y F. Laboratory test on volumetric characteristics of saturated sea sand under cyclic loading[J]. China Ocean Engineering, 2003, 17(1): 93-100. http://www.nstl.gov.cn/paper_detail.html?id=2e1d60499fd6399be1fd9d65d3b00dd5
|
[10] |
MARTIN G R, SEED H B, LIAM FINN W D. Fundamentals of liquefaction under cyclic loading[J]. Journal of the Geotechnical Engineering Division, 1975, 101(5): 423-438. doi: 10.1061/AJGEB6.0000164
|
[11] |
BYRNE P M. A cyclic shear-volume coupling and pore pressure model for sand[C]//Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, 1991.
|
[12] |
张建民. 砂土的可逆性和不可逆性剪胀规律[J]. 岩土工程学报, 2000, 22(1): 12-17. http://www.cgejournal.com/cn/article/id/10443
ZHANG Jianmin. Reversible and irreversible dilatancy of sand[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 12-17. (in Chinese) http://www.cgejournal.com/cn/article/id/10443
|
[13] |
KANG X, GE L, CHANG K T, et al. Strain-controlled cyclic simple shear tests on sand with radial strain measurements[J]. Journal of Materials in Civil Engineering, 2016, 28(4): 1-8. doi: 10.1061/(asce)mt.1943-5533.0001458
|
[14] |
WU Z X, YIN Z Y, DANO C, et al. Cyclic volumetric strain accumulation for sand under drained simple shear condition[J]. Applied Ocean Research, 2020, 101: 102200. doi: 10.1016/j.apor.2020.102200
|
[15] |
何杨. 复杂应力条件下饱和砂土孔隙水压力及体变特性试验研究[D]. 大连: 大连理工大学, 2007.
HE Yang. Experimental Study on Pore Water Pressure and Volumetric Strain Characteristics of Saturated Sands under Complex Stress Condition[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
|
[16] |
SHAHNAZARI H, REZVANI R, TUTUNCHIAN M A. Post-cyclic volumetric strain of calcareous sand using hollow cylindrical torsional shear tests[J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 162-171. doi: 10.1016/j.soildyn.2019.05.030
|
[17] |
DUKU P M, STEWART J P, WHANG D H, et al. Volumetric strains of clean sands subject to cyclic loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(8): 1073-1085. doi: 10.1061/(ASCE)1090-0241(2008)134:8(1073)
|
[18] |
YEE E, DUKU P M, STEWART J P. Cyclic volumetric strain behavior of sands with fines of low plasticity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(4): 1-10.
|
[19] |
赵凯, 吴琪, 熊浩, 等. 双向耦合循环剪切条件下饱和砂土体应变发展规律试验研究[J]. 岩土工程学报, 2019, 41(7): 1260-1269. doi: 10.11779/CJGE201907010
ZHAO Kai, WU Qi, XIONG Hao, et al. Experimental investigations on volumetric strain behavior of saturated sands under bi-directional cyclic loadings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1260-1269. (in Chinese) doi: 10.11779/CJGE201907010
|
[20] |
HUANG B, CHEN X Y, ZHAO Y. A new index for evaluating liquefaction resistance of soil under combined cyclic shear stresses[J]. Engineering Geology, 2015, 199: 125-139.
|
[21] |
TONG Z, ZHANG J M, YU Y L, et al. Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136: 1509-1518.
|
[22] |
CHEN G X, MA W J, QIN Y, et al. Liquefaction susceptibility of saturated coral sand subjected to various patterns of principal stress rotation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021093. http://www.nstl.gov.cn/paper_detail.html?id=7c7f65e9bbe9b95b0278251b70591332
|
[23] |
沈扬. 考虑主应力方向变化的原状软粘土试验研究[D]. 杭州: 浙江大学, 2007.
SHEN Yang. Experimental study on effect of variation of principal stress orientation on undisturbed soft clay[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
|
[24] |
CHEN G X, WU Q, ZHOU Z L, et al. Undrained anisotropy and cyclic resistance of saturated silt subjected to various patterns of principal stress rotation[J]. Géotechnique, 2020, 70(4): 317-331. http://hub.hku.hk/handle/10722/293322
|
[25] |
黄博, 凌道盛, 丁浩, 等. 斜入射地震波在土体中产生的动应力路径及试验模拟[J]. 岩土工程学报, 2013, 35(2): 276-283. http://www.cgejournal.com/cn/article/id/14969
HUANG Bo, LING Daosheng, DING Hao, et al. Seismic stress path induced by obliquely incident waves and its simulation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 276-283. (in Chinese) http://www.cgejournal.com/cn/article/id/14969
|
[26] |
土的工程分类标准: GB/T 50145—2007[S]. 北京: 中国计划出版社, 2008.
Standard for Engineering Classification of Soil: GB/T 50145—2007[S]. Beijing: China Planning Press, 2008. (in Chinese)
|
1. |
刘姝,李文杰,李莉佳,罗永江,陶瑞,李晓璇,杨亚会. 天然气水合物开采方法研究现状及展望. 钻探工程. 2024(05): 12-23 .
![]() | |
2. |
于倩男,唐慧敏,李承龙,梁爽,梁家修,陈志静,张琨. 天然气水合物注热分解渗流特征及数值模拟. 东北石油大学学报. 2023(06): 38-54+127-128 .
![]() |