• Indexed in Scopus
  • Source Journal for Chinese Scientific and Technical Papers and Citations
  • Included in A Guide to the Core Journal of China
  • Indexed in Ei Compendex
LI Chao, GUAN Longhua, HE Jianjian, WANG Yubing. Centrifugal model tests on mainshock response directionality and aftershock effect of slopes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1285-1293. DOI: 10.11779/CJGE20220328
Citation: LI Chao, GUAN Longhua, HE Jianjian, WANG Yubing. Centrifugal model tests on mainshock response directionality and aftershock effect of slopes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1285-1293. DOI: 10.11779/CJGE20220328

Centrifugal model tests on mainshock response directionality and aftershock effect of slopes

More Information
  • Received Date: March 22, 2022
  • Available Online: February 19, 2023
  • A centrifugal model shaking table test with gravity of 50 times is carried out on a sandy slope containing an inclined bedrock interface to investigate the characteristics of changes in slope response and deformation under the action of the main shock-aftershock sequence. Firstly, the acceleration amplification effect of the mainshock is discussed through the time and spectral analysis, then the relationship between the mainshock response directionality and the amplification coefficient together with the mechanism of the truncation effect is explained using a model for rigid wedge-shaped sliding body. Finally, the aftershock effect and its influence are explored through the cumulative deformation. The results show that the amplification effect is frequency-dependent. The low-frequency part of the response is amplified to different degrees with the increase of elevation, while the amplification coefficient defined by PGA needs to be combined with the consideration of the response directionality due to the difference between downslope and upslope. The truncation effect and its relations with the response directionality reflect the coupling effect of deformation and response of the slope. The analysis of the aftershock effect points out that the total displacement increment of certain parts caused by aftershock can be comparable to that caused by the mainshock. This additional influence of aftershocks should be considered in engineering design.
  • [1]
    CLOUGH R W, PIRTZ D. Earthquake resistance of rock-fill dams[J]. Transactions of the American Society of Civil Engineers, 1958, 123(1): 792-810. doi: 10.1061/TACEAT.0007548
    [2]
    KUTTER B L. Recent advances in centrifuge modeling of seismic shaking[C]// 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. St Louis, 1995.
    [3]
    MADABHUSHI S P G, HAIGH S K, SUBEDI B R. Seismic behaviour of steep slopes[M]// Physical Modelling in Geotechnics. London: Routledge, 2022: 489-494.
    [4]
    YU Y Z, DENG L J, SUN X, et al. Centrifuge modeling of a dry sandy slope response to earthquake loading[J]. Bulletin of Earthquake Engineering, 2008, 6(3): 447-461. doi: 10.1007/s10518-008-9070-9
    [5]
    BRENNAN A J, MADABHUSHI S P G. Amplification of seismic accelerations at slope crests[J]. Canadian Geotechnical Journal, 2009, 46(5): 585-594. doi: 10.1139/T09-006
    [6]
    ZHANG Z L, WANG T, WU S R, et al. Seismic performance of loess-mudstone slope by centrifuge tests[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(2): 671-679. doi: 10.1007/s10064-015-0846-2
    [7]
    孙志亮, 孔令伟, 郭爱国. 风干堆积体边坡地震响应的动力离心模型试验[J]. 岩石力学与工程学报, 2017, 36(9): 2102-2112. doi: 10.13722/j.cnki.jrme.2017.0077

    SUN Zhiliang, KONG Lingwei, GUO Aiguo. Dynamic centrifuge tests on seismic responses of air-dried deposit slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2102-2112. (in Chinese) doi: 10.13722/j.cnki.jrme.2017.0077
    [8]
    涂杰文, 刘红帅, 汤爱平, 等. 堆积型滑坡地震响应的离心模型试验[J]. 东北大学学报(自然科学版), 2016, 37(5): 736-740. doi: 10.3969/j.issn.1005-3026.2016.05.027

    TU Jiewen, LIU Hongshuai, TANG Aiping, et al. Centrifuge model test on the seismic response of colluvial landslide[J]. Journal of Northeastern University (Natural Science), 2016, 37(5): 736-740. (in Chinese) doi: 10.3969/j.issn.1005-3026.2016.05.027
    [9]
    涂杰文, 刘红帅, 汤爱平, 等. 基于离心振动台的堆积型滑坡加速度响应特征[J]. 岩石力学与工程学报, 2015, 34(7): 1361-1369. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507009.htm

    TU Jiewen, LIU Hongshuai, TANG Aiping, et al. Acceleration response of colluvial landslide based on centrifugal shaking table test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1361-1369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201507009.htm
    [10]
    RATHJE E M, BRAY J D. An examination of simplified earthquake-induced displacement procedures for earth structures[J]. Canadian Geotechnical Journal, 1999, 36(1): 72-87. doi: 10.1139/t98-076
    [11]
    NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Géotechnique, 1965, 15(2): 139-160. doi: 10.1680/geot.1965.15.2.139
    [12]
    于玉贞, 李荣建, 李广信, 等. 饱和砂土地基上边坡地震动力离心模型试验研究[J]. 清华大学学报(自然科学版), 2008, 48(9): 1422-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200809011.htm

    YU Yuzhen, LI Rongjian, LI Guangxin, et al. Experimental study on centrifuge model dynamic behavior of slopes with saturated subgrades during earthquakes[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(9): 1422-1425. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB200809011.htm
    [13]
    ZHANG Z L, WANG T, WU S R, et al. Investigation of dormant landslides in earthquake conditions using a physical model[J]. Landslides, 2017, 14(3): 1181-1193. doi: 10.1007/s10346-017-0813-z
    [14]
    ZHANG Z L, WANG T, WU S R, et al. Seismic performance of loess-mudstone slope in Tianshui–Centrifuge model tests and numerical analysis[J]. Engineering Geology, 2017, 222: 225-235. doi: 10.1016/j.enggeo.2017.04.006
    [15]
    邵帅, 邵生俊, 李宁, 等. 地震作用下黄土边坡震陷破坏的动力离心模型试验研究[J]. 岩土工程学报, 2021, 43(2): 245-253. doi: 10.11779/CJGE202102004

    SHAO Shuai, SHAO Shengjun, LI Ning, et al. Dynamic centrifugal model tests on seismic subsidence of loess slopes under earthquake action[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 245-253. (in Chinese) doi: 10.11779/CJGE202102004
    [16]
    YIN Y P, LI B, WANG W P. Dynamic analysis of the stabilized Wangjiayan landslide in the Wenchuan Ms 8.0 earthquake and aftershocks[J]. Landslides, 2015, 12(3): 537-547. doi: 10.1007/s10346-014-0497-6
    [17]
    WANG Y S, LUO Y H, WANG F H, et al. Slope seismic response monitoring on the aftershocks of the Wenchuan earthquake in the Mianzhu section[J]. Journal of Mountain Science, 2012, 9(4): 523-528. doi: 10.1007/s11629-012-2179-y
    [18]
    SHI Z M, WANG Y Q, PENG M, et al. Landslide Dam deformation analysis under aftershocks using large-scale shaking table tests measured by videogrammetric technique[J]. Engineering Geology, 2015, 186: 68-78.
    [19]
    土工离心模型试验技术规程: DL/T 5102—2013[S]. 北京: 中国电力出版社, 2014.

    Specification for Geotechnical Centrifuge Model Test Techniques: DL/T 5102—2013[S]. Beijing: China Electric Power Press, 2014. (in Chinese)
    [20]
    MAVROEIDIS G P. A mathematical representation of near-fault ground motions[J]. Bulletin of the Seismological Society of America, 2003, 93(3): 1099-1131. http://www.nstl.gov.cn/paper_detail.html?id=f0adacbc9f944cb57bc0136366d7e45b
    [21]
    RATHJE E M, BRAY J D. One- and two-dimensional seismic analysis of solid-waste landfills [J]. Canadian Geotechnical Journal, 2001, 38(4): 850-862.
    [22]
    KRAMER S L, LINDWALL N W. Dimensionality and directionality effects in newmark sliding block analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(3): 303-315.
    [23]
    GAZETAS G, UDDIN N. Permanent deformation on preexisting sliding surfaces in dams[J]. Journal of Geotechnical Engineering, 1994, 120(11): 2041-2061.
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. 窦林名,曹安业,杨耀,贺虎,杨垚鑫,白贤栖,顾倩悦,李松徽,付相超,顾颖诗,吴震,张帝. 巨厚覆岩矿震孕育破裂特征与应力触发机制. 煤田地质与勘探. 2024(10): 1-13 .
    2. 李新旺,温学君,代卫林,程立朝,孙利辉. 大埋深倾斜厚煤层下导水裂隙带发育高度的微震监测. 中国科技论文. 2023(05): 526-533 .
    3. 朱全海. 面向水坝变形与应力监测的混合模型构建研究. 中国新技术新产品. 2023(07): 122-124 .
    4. 刘开航,冯磊,云美厚,曹运兴,田林. 煤层顶板高地应力区对微震层析反演的影响. 煤田地质与勘探. 2023(07): 174-183 .
    5. 刘洋,陆菜平,王华,郭英,肖自义,夏磊,王超. 不规则煤柱变形破坏机理矩张量反演研究. 采矿与安全工程学报. 2023(06): 1201-1209 .
    6. 石峰,张达,吴亚飞,李坤,王平. 矿山开采过程地压活动综合评价分析. 有色金属(矿山部分). 2022(05): 31-36 .

    Other cited types(6)

Catalog

    Article views (313) PDF downloads (75) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return