Citation: | ZHU Yinbin, LI Changdong, ZHOU Jiaqing, XIANG Linyu, YU Habin, CHEN Wenqiang. Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307 |
[1] |
CHEN Y D, SELVADURAI A P S, ZHAO Z H. Modeling of flow characteristics in 3D rough rock fracture with geometry changes under confining stresses[J]. Computers and Geotechnics, 2021, 130: 103910. doi: 10.1016/j.compgeo.2020.103910
|
[2] |
SNOW D T. A Parallel Plate Model of Fractured Permeable Media[D]. Berkeley: University of California of Berkeley, 1965.
|
[3] |
LOMIZE G M. Flow in Fractured Rock[M]. Moscow: Gosemergoizdat, 1951.
|
[4] |
LOUIS C. Rock hydraulics[M]// Rock Mechanics. Vienna: Springer Vienna, 1972.
|
[5] |
速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报, 1995, 17(5): 19-24. doi: 10.3321/j.issn:1000-4548.1995.05.004
SU Baoyu, ZHAN Meili, ZHAO Jian. Study on fracture seepage in the imitative nature roke[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 19-24. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.05.004
|
[6] |
XIONG X B, LI B, JIANG Y J, et al. Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1292-1302. doi: 10.1016/j.ijrmms.2011.09.009
|
[7] |
LIU R C, JING H W, HE L X, et al. An experimental study of the effect of fillings on hydraulic properties of single fractures[J]. Environmental Earth Sciences, 2017, 76(20): 684. doi: 10.1007/s12665-017-7024-8
|
[8] |
ZHANG Z Y, NEMCIK J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures[J]. Journal of Hydrology, 2013, 477(16): 139-151. http://www.sciencedirect.com/science/article/pii/S0022169412010037
|
[9] |
CHEN Y F, ZHOU J Q, Hu S H, et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology, 2015, 529: 993-1006. doi: 10.1016/j.jhydrol.2015.09.021
|
[10] |
SHAO J L, ZHANG Q, SUN W B, et al. Numerical simulation on non-darcy flow in a single rock fracture domain inverted by digital images[J]. Geofluids, 2020, 2020: 1-13. http://www.xueshufan.com/publication/3037631765
|
[11] |
BAGHBANAN A, JING L R. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 704-719. doi: 10.1016/j.ijrmms.2006.11.001
|
[12] |
ZHAO Z H, LI B, JIANG Y J. Effects of fracture surface roughness on macroscopic fluid flow and solute transport in fracture networks[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2279-2286. doi: 10.1007/s00603-013-0497-1
|
[13] |
ZHANG X, SANDERSON D J. Effects of stress on the two-dimensional permeability tensor of natural fracture networks[J]. Geophysical Journal International, 1996, 125(3): 912-924. doi: 10.1111/j.1365-246X.1996.tb06034.x
|
[14] |
速宝玉, 詹美礼, 张祝添. 充填裂隙渗流特性实验研究[J]. 岩土力学, 1994, 15(4): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.005.htm
SU Baoyu, ZHAN Meili, ZHANG Zhutian. Experimental research of seepage characteristic for filled fracture[J]. Rock and Soil Mechanics, 1994, 15(4): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.005.htm
|
[15] |
王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. doi: 10.11779/CJGE201607013
WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) doi: 10.11779/CJGE201607013
|
[16] |
NI X D, NIU Y L, WANG Y, et al. Non-darcy flow experiments of water seepage through rough-walled rock fractures[J]. Geofluids, 2018, 2018: 1-12. http://doc.paperpass.com/foreign/rgArti2018282828152.html
|
[17] |
RONG G, TAN J, ZHAN H B, et al. Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture[J]. Journal of Hydrology, 2020, 589: 125162. doi: 10.1016/j.jhydrol.2020.125162
|
[18] |
YIN P J, ZHAO C, Ma J J, et al. Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104293. http://www.sciencedirect.com/science/article/pii/S1365160919310032
|
[19] |
周新, 盛建龙, 叶祖洋, 等. 岩体粗糙裂隙几何特征对其Forchheimer型渗流特性的影响[J]. 岩土工程学报, 2021, 43(11): 2075-2083. doi: 10.11779/CJGE202111014
ZHOU Xin, SHENG Jianlong, YE Zuyang, et al. Effects of geometrical feature on Forchheimer- flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2075-2083. (in Chinese) doi: 10.11779/CJGE202111014
|
[20] |
ZHOU J Q, CHEN Y F, WANG L C, et al. Universal relationship between viscous and inertial permeability of geologic porous media[J]. Geophysical Research Letters, 2019, 46(3): 1441-1448. doi: 10.1029/2018GL081413
|
[21] |
DETWILER R L. Experimental observations of deformation caused by mineral dissolution in variable-aperture fractures[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8). http://www.onacademic.com/detail/journal_1000035647835010_76bb.html
|
[22] |
OGILVIE S R, ISAKOV E, GLOVER P W J. Fluid flow through rough fractures in rocks. Ⅱ: A new matching model for rough rock fractures[J]. Earth and Planetary Science Letters, 2006, 241(3-4): 454-465. http://www.onacademic.com/detail/journal_1000035381379510_8e06.html
|
[23] |
MYERS N O. Characterization of surface roughness[J]. Wear, 1962, 5(3): 182-189. http://www.sciencedirect.com/science/article/pii/0043164862900029
|
[24] |
ZHOU J Q, WANG L C, LI C D, et al. Effect of fluid slippage on eddy growth and non-Darcian flow in rock fractures[J]. Journal of Hydrology, 2020, 581: 124440.
|
[1] | ZHOU Xin, SHENG Jian-long, YE Zu-yang, LUO Wang, HUANG Shi-bing, CHENG Ai-ping. Effects of geometrical feature on Forchheimer-flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2075-2083. DOI: 10.11779/CJGE202111014 |
[2] | CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003 |
[3] | ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. Review and research on osmotic suction of saturated saline soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1199-1210. DOI: 10.11779/CJGE202007003 |
[4] | ZHU Sheng. Gradation equation and compaction characteristics of continuously distributed coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1899-1906. DOI: 10.11779/CJGE201910014 |
[5] | ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, LIU Hai-yang. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741-747. DOI: 10.11779/CJGE201904018 |
[6] | ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019 |
[7] | TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012 |
[8] | ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, GAO Zhuang-pin, ZHAN Zhen-gang. Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. DOI: 10.11779/CJGE201801010 |
[9] | ZHU Sheng, DENG Shi-de, NING Zhi-yuan, WANG Jing. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. DOI: 10.11779/CJGE201706023 |
[10] | WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012 |