• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHU Yinbin, LI Changdong, ZHOU Jiaqing, XIANG Linyu, YU Habin, CHEN Wenqiang. Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307
Citation: ZHU Yinbin, LI Changdong, ZHOU Jiaqing, XIANG Linyu, YU Habin, CHEN Wenqiang. Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1278-1284. DOI: 10.11779/CJGE20220307

Experimental and numerical studies on non-Darcian flow in single rough-walled rock fracture

More Information
  • Received Date: March 20, 2022
  • Available Online: June 07, 2023
  • A series of rough-walled rock fracture specimens with specific surface roughnesses are made by using the three- dimensional carving. After that, the self-designed apparatus which can quantitatively change the aperture of single rock fracture is adopted to realize the purpose of aperture and surface roughness to be quantitatively controlled in the experiment. The seepage experiments on all rock fracture replicas at different flow rates are carried out to study the influences of the mean aperture and surface roughness on the non-Darcian flow in a single rough-walled rock fracture. The results show that the Forchheimer equation is suitable for characterizing the non-Darcian flow in rough-walled fractures. The fractal dimension is an effective parameter to reflect the surface roughness of rock fracture, and the increase of fractal dimension mainly leads to an enlargement in degree of tortuousness and results in the increased complexity of flow paths. An empirical quantification model is established to relate the inertial permeability to the mean aperture and fractal dimension. The numerical simulations by directly solving the Navier-Stokes equation are performed to investigate the non-Darcian flow in three-dimensional rough-walled fractures with different apertures and roughnesses. The inertial permeabilities of the simulated results agree well with those of the empirical quantification model and experiments, indicating that both the model and the experiments are reliable. The prediction accuracy of the empirical model increases with the decrease of the mean aperture and increase of surface roughness.
  • [1]
    CHEN Y D, SELVADURAI A P S, ZHAO Z H. Modeling of flow characteristics in 3D rough rock fracture with geometry changes under confining stresses[J]. Computers and Geotechnics, 2021, 130: 103910. doi: 10.1016/j.compgeo.2020.103910
    [2]
    SNOW D T. A Parallel Plate Model of Fractured Permeable Media[D]. Berkeley: University of California of Berkeley, 1965.
    [3]
    LOMIZE G M. Flow in Fractured Rock[M]. Moscow: Gosemergoizdat, 1951.
    [4]
    LOUIS C. Rock hydraulics[M]// Rock Mechanics. Vienna: Springer Vienna, 1972.
    [5]
    速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的实验研究[J]. 岩土工程学报, 1995, 17(5): 19-24. doi: 10.3321/j.issn:1000-4548.1995.05.004

    SU Baoyu, ZHAN Meili, ZHAO Jian. Study on fracture seepage in the imitative nature roke[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 19-24. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.05.004
    [6]
    XIONG X B, LI B, JIANG Y J, et al. Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(8): 1292-1302. doi: 10.1016/j.ijrmms.2011.09.009
    [7]
    LIU R C, JING H W, HE L X, et al. An experimental study of the effect of fillings on hydraulic properties of single fractures[J]. Environmental Earth Sciences, 2017, 76(20): 684. doi: 10.1007/s12665-017-7024-8
    [8]
    ZHANG Z Y, NEMCIK J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures[J]. Journal of Hydrology, 2013, 477(16): 139-151. http://www.sciencedirect.com/science/article/pii/S0022169412010037
    [9]
    CHEN Y F, ZHOU J Q, Hu S H, et al. Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures[J]. Journal of Hydrology, 2015, 529: 993-1006. doi: 10.1016/j.jhydrol.2015.09.021
    [10]
    SHAO J L, ZHANG Q, SUN W B, et al. Numerical simulation on non-darcy flow in a single rock fracture domain inverted by digital images[J]. Geofluids, 2020, 2020: 1-13. http://www.xueshufan.com/publication/3037631765
    [11]
    BAGHBANAN A, JING L R. Hydraulic properties of fractured rock masses with correlated fracture length and aperture[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 704-719. doi: 10.1016/j.ijrmms.2006.11.001
    [12]
    ZHAO Z H, LI B, JIANG Y J. Effects of fracture surface roughness on macroscopic fluid flow and solute transport in fracture networks[J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2279-2286. doi: 10.1007/s00603-013-0497-1
    [13]
    ZHANG X, SANDERSON D J. Effects of stress on the two-dimensional permeability tensor of natural fracture networks[J]. Geophysical Journal International, 1996, 125(3): 912-924. doi: 10.1111/j.1365-246X.1996.tb06034.x
    [14]
    速宝玉, 詹美礼, 张祝添. 充填裂隙渗流特性实验研究[J]. 岩土力学, 1994, 15(4): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.005.htm

    SU Baoyu, ZHAN Meili, ZHANG Zhutian. Experimental research of seepage characteristic for filled fracture[J]. Rock and Soil Mechanics, 1994, 15(4): 46-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX404.005.htm
    [15]
    王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. doi: 10.11779/CJGE201607013

    WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) doi: 10.11779/CJGE201607013
    [16]
    NI X D, NIU Y L, WANG Y, et al. Non-darcy flow experiments of water seepage through rough-walled rock fractures[J]. Geofluids, 2018, 2018: 1-12. http://doc.paperpass.com/foreign/rgArti2018282828152.html
    [17]
    RONG G, TAN J, ZHAN H B, et al. Quantitative evaluation of fracture geometry influence on nonlinear flow in a single rock fracture[J]. Journal of Hydrology, 2020, 589: 125162. doi: 10.1016/j.jhydrol.2020.125162
    [18]
    YIN P J, ZHAO C, Ma J J, et al. Experimental study of non-linear fluid flow though rough fracture based on fractal theory and 3D printing technique[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104293. http://www.sciencedirect.com/science/article/pii/S1365160919310032
    [19]
    周新, 盛建龙, 叶祖洋, 等. 岩体粗糙裂隙几何特征对其Forchheimer型渗流特性的影响[J]. 岩土工程学报, 2021, 43(11): 2075-2083. doi: 10.11779/CJGE202111014

    ZHOU Xin, SHENG Jianlong, YE Zuyang, et al. Effects of geometrical feature on Forchheimer- flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2075-2083. (in Chinese) doi: 10.11779/CJGE202111014
    [20]
    ZHOU J Q, CHEN Y F, WANG L C, et al. Universal relationship between viscous and inertial permeability of geologic porous media[J]. Geophysical Research Letters, 2019, 46(3): 1441-1448. doi: 10.1029/2018GL081413
    [21]
    DETWILER R L. Experimental observations of deformation caused by mineral dissolution in variable-aperture fractures[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8). http://www.onacademic.com/detail/journal_1000035647835010_76bb.html
    [22]
    OGILVIE S R, ISAKOV E, GLOVER P W J. Fluid flow through rough fractures in rocks. Ⅱ: A new matching model for rough rock fractures[J]. Earth and Planetary Science Letters, 2006, 241(3-4): 454-465. http://www.onacademic.com/detail/journal_1000035381379510_8e06.html
    [23]
    MYERS N O. Characterization of surface roughness[J]. Wear, 1962, 5(3): 182-189. http://www.sciencedirect.com/science/article/pii/0043164862900029
    [24]
    ZHOU J Q, WANG L C, LI C D, et al. Effect of fluid slippage on eddy growth and non-Darcian flow in rock fractures[J]. Journal of Hydrology, 2020, 581: 124440.
  • Related Articles

    [1]ZHOU Xin, SHENG Jian-long, YE Zu-yang, LUO Wang, HUANG Shi-bing, CHENG Ai-ping. Effects of geometrical feature on Forchheimer-flow behavior through rough-walled rock fractures[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(11): 2075-2083. DOI: 10.11779/CJGE202111014
    [2]CHEN Zi-yu, LI Guo-ying, WEI Kuang-min, WU Li-qiang, ZHU Yu-meng. Ultimate state and probability of particle breakage for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(7): 1192-1200. DOI: 10.11779/CJGE202107003
    [3]ZHOU Feng-xi, WANG Li-ye, LAI Yuan-ming. Review and research on osmotic suction of saturated saline soils[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7): 1199-1210. DOI: 10.11779/CJGE202007003
    [4]ZHU Sheng. Gradation equation and compaction characteristics of continuously distributed coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1899-1906. DOI: 10.11779/CJGE201910014
    [5]ZHANG Hong, YAN Xiao-hui, WANG Zhong-han, LIU Hai-yang. Migration law of salt in compacted aeolian sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 741-747. DOI: 10.11779/CJGE201904018
    [6]ZHU Sheng, ZHONG Chun-xin, WANG Jing, HE Shun-bin. Experimental study on filling standard of high rockfill dams with soil core[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 561-566. DOI: 10.11779/CJGE201903019
    [7]TAO Gao-liang, CHEN Yin, YUAN Bo, GAN Shi-chao, WU Xiao-kang, ZHU Xue-liang. Predicting soil-water retention curve based on NMR technology and fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1466-1472. DOI: 10.11779/CJGE201808012
    [8]ZHU Sheng, ZHONG Chun-xin, ZHENG Xi-lei, GAO Zhuang-pin, ZHAN Zhen-gang. Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. DOI: 10.11779/CJGE201801010
    [9]ZHU Sheng, DENG Shi-de, NING Zhi-yuan, WANG Jing. Gradation design method for rockfill materials based on fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. DOI: 10.11779/CJGE201706023
    [10]WANG Sheng-fu, YANG Ping, LIU Guan-rong, FAN Wen-hu. Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1254-1261. DOI: 10.11779/CJGE201607012

Catalog

    Article views (402) PDF downloads (131) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return